CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

CBCS, LOCF and NEP-2020 Based

Curriculum and Syllabi Of M.Sc. Physics

(w.e.f. October 2021)

DEPARTMENT OF PHYSICS & ASTROPHYSICS SCHOOL OF BASIC SCIENCES

Approved by :BOSSchool BoardAcademic CouncilApproval Status :ApprovedApprovedApprovedApproval Date :08-09-202120-09-202112-10-2021

Table of Contents

Sr.	Contents	Page
No.		No.
	VISION AND MISSION	3
1	BACKGROUND	
	i) NEP-2020 and LOCF an integrated Approach	4
	ii) About the subject	6
	iii) About the Programme (Nature, extent and aims)	6
	iv) Qualification Descriptors (possible career pathways)	7
2	PROGRAMME OUTCOMES (POs)	8
3	PROGRAMME SPECIFIC OUTCOMES (PSOs)	9
4	POSTGRADUATE ATTRIBUTES	9
5	STRUCTURE OF MASTER'S COURSE	10
6	LEARNING OUTCOME INDEX	11
	(Mapping of Courses with POs and PSOs)	
7	SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION	15
8	COURSE-LEVEL LEARNING OUTCOMES	20
9	TEACHING-LEARNING PROCESS	135
10	IMPLEMENTATION OF BLENDED LEARNING	143
11	ASSESSMENT AND EVALUATION	143
12	KEYWORDS	144
13	REFERENCES	144
14	APPENDICES	144

VISION AND MISSION

i) Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through promotion of innovation, creative endeavours, and scholarly inquiry.

Mission

To serve as a beacon of change, through multi-disciplinary learning, for creation of knowledge community, by building a strong character and nurturing a value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research and innovation in pure and applied areas of learning.

ii) Vision and Mission of the Department

Vision

To establish a platform for the dissemination and creation of knowledge through teaching and research in Physics and Astrophysics at various levels. To help create a scientific society which encourages logical thinking.

Mission

- To offer a state of art Academic Programs in Physics and interdisciplinary areas.
- To create intellectual property through innovations, quality research publications and patents
- To create state of art research laboratories which will facilitate the research of Central University of Haryana as well as other academic institutions.

1. BACKGROUND

i) NEP-2020 and LOCF an integrated Approach

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of Central University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programmes in alignment with National Education Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted with the adoption of "Comprehensive Roadmap for Implementation of NEP-2020" in 32nd meeting of the Academic Council of the University held on April 23, 2021. The Roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and indicative timeline for major academic reforms.

The process of revamping the curriculum started with the series of webinars and discussions conducted by the University to orient the teachers about the key features of the Policy, enabling them to revise the curriculum in sync with the Policy. Proper orientation of the faculty about the vision and provisions of NEP-2020 made it easier for them to appreciate and incorporate the vital aspects of the Policy in the revised curriculum focused on 'creating holistic, thoughtful, creative and well-rounded individuals equipped with the key 21st century skills' for the 'development of an enlightened, socially conscious, knowledgeable, and skilled nation'.

With NEP-2020 in background, the revised curricula articulate the spirit of the policy by emphasising upon—integrated approach to learning; innovative pedagogies and assessment strategies; multidisciplinary and cross-disciplinary education; creative and critical thinking; ethical and Constitutional values through value-based courses; 21st century capabilities across the range of disciplines through life skills, entrepreneurial and professional skills; community and constructive public engagement; social, moral and environmental awareness; Organic Living and Global Citizenship Education (GCED);

holistic, inquiry-based, discovery-based, discussion-based, and analysis-based learning; exposure to Indian knowledge system, cultural traditions and classical literature through relevant courses offering 'Knowledge of India'; fine blend of modern pedagogies with indigenous and traditional ways of learning; flexibility in course choices; student-centric participatory learning; imaginative and flexible curricular structures to enable creative combination of disciplines for study; offering multiple entry and exit points initially in undergraduate programmes; alignment of Vocational courses with the International Standard Classification of Occupations maintained by the International Labour Organization; breaking the silos of disciplines; integration of extra-curricular and curricular aspects; exploring internships with local industry, businesses, artists and crafts persons; closer collaborations between industry and higher education institutions for technical, vocational and science programmes; and formative assessment tools to be aligned with the learning outcomes, capabilities, and dispositions as specified for each course. In case of UG programmes in Engineering and Vocational Studies, it was decided that the departments shall incorporate pertinent NEP recommendations while complying with AICTE, NBA, NSQF, International Standard Classification of Occupations, Sector Skill Council and other relevant agencies/sources. The University has also developed consensus on adoption of Blended Learning with 40% component of online teaching and 60% face to face classes for each programme.

The revised curricula of various programmes could be devised with concerted efforts of the faculty, Heads of the Departments and Deans of Schools of Study. The draft prepared by each department was discussed in series of discussion sessions conducted at Department, School and the University level. The leadership of the University has been a driving force behind the entire exercise of developing the uniform template and structure for the revised curriculum. The Vice Chancellor of the University conducted series of meetings with Heads and Deans to deliberate upon the vital parameters of the revised curriculum to formulate a uniform template featuring Background, Programme Outcomes, Programme Specific Outcomes, Postgraduate Attributes, Structure of Masters Course, Learning Outcome Index, Semester-wise Courses and Credit Distribution, Course-level Learning Outcomes, Teaching-

Learning Process, Blended Learning, Assessment and Evaluation, Keywords, References and Appendices. The experts of various Boards of Studies and School Boards contributed to a large extent in giving the final shape to the revised curriculum of each programme.

To ensure the implementation of curricular reforms envisioned in NEP-2020, the University has decided to implement various provisions in a phased manner. Accordingly, the curriculum may be reviewed annually.

ii) About the Subject

Physics is the natural science that studies the matter, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines and its main goal is to understand the behavior of universe and its characteristics.

Physics uses the scientific method to help uncover the basic principles governing light and matter, and to discover the implications of those laws. It assumes that there are rules by which the universe functions, and that those laws can be at least partially understood by humans. It is also commonly believed that those laws could be used to predict everything about the universe's future if complete information was available about the present state of all light and matter.

On inclusion of Astronomy, the Physics became one of the oldest academic disciplines. Physics intersects with many interdisciplinary areas of research. New ideas in Physics often explain the fundamental mechanisms studied by other branches of science and suggest new avenues of research in academic disciplines such mathematics etc. Advancement in Physics often leads to new technologies.

iii) About the Programme (Nature, extent and aims)

M.Sc. Physics is a two year regular programme. There four semesters in this programme. Each semester is of sixteen weeks duration. Teaching and learning process of M.Sc. Physics involves theory and practical classes along with seminar presentation and research project work.

The curriculum will be taught through formal lectures with the aid of power-point presentations, audio and video tools and other teaching aids can be used as and when required. Emphasis will be given to laboratory work and visit to National laboratories to give hands on experience to students. Students will be encourage to do semester long project in their own institutes as well as in reputed institutes of National level. Aims of the Programme are as follows

- Understand the underlying Physics in respective specializations, and, be able to teach and guide successfully
- Introduce advanced ideas and techniques that are applicable in respective fields.
- Provide the students with a broad spectrum of Physics Courses
- Emphasize the role of Physics in other disciplines such as (Chemical Sciences, Mathematical Sciences, Life Sciences and their applied areas)
- Develop the ability of the students to observe, perform, analyse and report an experiment
- > Develop the ability of the students to deal with physical models and formulas mathematically
- Equip the students with different practical, intellectual and transferable skills.
- Strengthen the student knowledge of Physics and its applications in real world.
- Provide the student with mathematical and computational tools and models to be used in solving professional problems
- Improve the student's inter disciplinary skills.
- > To develop human resources with a solid foundation in theoretical and experimental aspects of respective specializations as a preparation for career in academia and industry.

iv) Qualification Descriptors (possible career pathways)

Upon successful completion of the course, the students receive a M.Sc. Degree in the Physics. The postgraduate of Department of Physics and Astrophysics are expected to opt different paths seeking sphere of knowledge and domain of professional work that can fulfill their dreams. Students will be able to demonstrate their knowledge in advance branches of Physics. This will establish a platform over which students can pursue higher studies. The possible career paths for postgraduate in M.Sc. Physics are

- 1. Teaching Assignments
- 2. Scientific Assignments

- 3. Instruments development
- 4. Research and Development in Industries
- 5. Simulation Techniques Development in Science
- 6. Role in Renewable Energy Resources
- 7. University/Institute Administrative Assignments
- 8. Technician in Lasers, Accelerators, Detectors and Electronics
- 9. Astronomer
- 10. Medical Device Designer
- 11. Radiologist

2. PROGRAMME OUTCOMES (POs)

Students enrolled in the Master's Programmes offered by the Departments under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attain important essential skills and abilities:

PO-No.	Component	Outcomes				
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge				
		gained during the programme.				
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained				
		during the programme.				
PO-3	Critical thinking and	Capable of analyzing the results critically and applying				
	Problem Solving	acquired knowledge to solve the problems.				
	abilities					
PO-4	Creativity and	Capable to identify, formulate, investigate and analyze				
	innovation	the scientific problems and innovatively to design and				
		create products and solutions to real life problems.				
PO-5	Research aptitude	Ability to develop a research aptitude and apply				
	and global	knowledge to find the solution of burning research				
	competency	problems in the concerned and associated fields at				
		global level.				
PO-6	Holistic and	Ability to gain knowledge with the holistic and				
	multidisciplinary	multidisciplinary approach across the fields.				

	education					
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary				
		skills and advanced techniques and apply them for				
		betterment of mankind.				
PO-8	Leadership and	Ability to learn and work in a groups and capable of				
	Teamwork abilities	leading a team even.				
PO-9	Environmental and	Learn important aspects associated with environmental				
	human health	and human health. Ability to develop eco-friendly				
	awareness	technologies.				
PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and				
	Social awareness	ability to relate with social problems.				
PO-11	lifelong learning	Ability to learn lifelong learning skills which are				
	skills and	important to provide better opportunities and improve				
	Entrepreneurship	quality of life. Capable to establish independent				
		startup/innovation center etc.				

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

The post graduates shall be able to realise the following specific outcomes by the end of program studies:

Number	Programme Specific Outcomes
PSO-1	Identify, formulate, and solve Physics problems
PSO-2	Design and conduct experiments, as well as to analyse and interpret data
PSO-3	Apply knowledge of Physics in a different stream of science and to communicate effectively.
PSO-4	Ability to use the techniques, skills, and modern physical tools in real world application.
PSO-5	Engage in life-long learning and will have recognition.

4. Postgraduate Attributes

No.	P.G. Attributes
PGA-1	have the ability to demonstrate advanced independent critical enquiry, analysis and reflection
PGA-2	In-depth knowledge of their specialist discipline(s)
PGA-3	be critical and creative thinkers, with an aptitude for continued self-directed learning
PGA-4	be able to examine critically, synthesize and evaluate knowledge across a broad range of disciplines.
PGA-5	Reach a high level of achievement in writing, research or project activities, problem solving and communication.
PGA-6	have a set of flexible and transferable skills for different types of employment
PGA-7	have a strong sence of intellectual integrity and ethics of scholarship.
PGA-8	be able to initiate and implement constructive change in their communities, including professions and workplaces.

5. STRUCTURE OF MASTER'S COURSE

Total Credits of M.Sc. Physics: 96

Types of Courses	Nature	Total Credits	%
Core Courses(CC)	Compulsory	60	62.5
Elective Courses (EC)	Discipline Centric Elective Courses	0	0
	Discipline Specialized Elective Courses	16	16.6
	Generic Elective Courses	8	8.3
Skilled-based courses/ Self-study based courses	Skill Enhancement Courses	12	12.5

List of Courses (*, **, ***, ****)

6. LEARNING OUTCOME INDEX

6.1A Mapping of Core Courses with PSOs

POs ⇒	PSO1	PSO2	PSO3	PSO4	PSO5
Course					
No. ↓					
1	J		V		
	,		·		·
2			$\sqrt{}$		$\sqrt{}$
			_		
3	√ √		√		√
	,	,		,	
4	√	√		√	
5	1/	1/			1/
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
6	V		V		
	,		•		
7	√		$\sqrt{}$		$\sqrt{}$
8					

9	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
10	√	√		V	
11	V		V	V	
12	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	
13	V	V			√
14	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	

6.1B Mapping of Discipline Centric Courses with PSOs

POs ⇒	PSO1	PSO2	PSO3	PSO4	PSO5
Course					
No. ↓					
1	√				√
2	√	√		√	√
3		√		√	√
4		√		√	√
5	√		√		√
6		√	√	√	
7	√	√			√
8		√	√	√	
9	√	√	√		
10	√		√		√
11	√		√		
12	√		√		√
13		√	√	√	
14		√	√	√	

15	$\sqrt{}$		√		
16	V		$\sqrt{}$		$\sqrt{}$
17	V		$\sqrt{}$		$\sqrt{}$
18	$\sqrt{}$		$\sqrt{}$		$\sqrt{}$
19	V		$\sqrt{}$		$\sqrt{}$
20	V	$\sqrt{}$			
21	V	$\sqrt{}$		V	
22	$\sqrt{}$		√	V	
23	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$
24		$\sqrt{}$		V	
25		$\sqrt{}$		V	
26	V			V	V
27	V	$\sqrt{}$			

7. SEMESTER-WISE COURSES AND CREDIT $\sqrt{\text{DISTRIBUTION}}$

SEMESTER-I (26-Credits)

Sr. No.	Course No	Course Code	Course Title	L	T	P	Hr s/ W ee k	Tota l Cred its
Core	Courses							
1	1	SBS PHY 01 101 CC 3104	Mathematical Methods in Physics - I	3	1	0	4	4
2	2	SBS PHY 01 102 CC 3104	Classical Mechanics	3	1	0	4	4
3	3	SBS PHY 01 103 CC 3104	Quantum Mechanics - I	3	1	0	4	4

4	4		Semiconductor Devices	3	1	0	4	4
		SBS PHY 01 104 CC 3104						
5	5	SBS PHY 01 105 CC 00126	Laboratory I	0	0	1	12	6
			-			2		

Generic Elective Courses (for students of other Departments)

6	1	SBS PHY 01 101 GEC 2124	Numerical Methods and			2	7	4
			Programming					
7	2	SBS PHY 01 102 GEC 3104	Modern Optics	3	1	0	4	4
8	3	SBS PHY 01 103 GEC 3104	Physics of Digital			0	4	4
			Photography					
9	4	SBS PHY 01 104 GEC 2002	Renewable Energy Resources	2	0	0	2	2

SEMESTER-II (26-Credits)

Sr. No.	Course No	Course Code	Course Title	L	T	P	Hr s/ W ee k	Tota l Cred its
Core	Courses	-	,	1		I		1
1	6	SBS PHY 01 201 CC 3104	Statistical Mechanics	3	1	0	4	4
2	7	SBS PHY 01 202 CC 3104	Classical Electrodynamics	3	1	0	4	4
3	8	SBS PHY 01 203 CC 3104	Mathematical Methods in Physics- II	3	1	0	4	4
4	9	SBS PHY 01 202 CC 3104	Quantum Mechanics - II	3	1	0	4	4
4	10	SBS PHY 01 204 CC 3104	Laboratory II	0	0	1 2	12	6

Disc	cipline Cent	tric Elective Courses						
5	1	SBS PHY 01 204 DCEC 3104	Introduction to Astronomy and Astrophysics	3	1 0 4			4
6	2	SBS PHY 01 205 DCEC 3104	Solar Energy and Physics of Photovoltaic	3	1	0	4	4
7	3	SBS PHY 01 206 DCEC 3104	Accelerator Physics	3	1	0	4	4
8	4	SBS PHY 01 207 DCEC 3104	Radiation Physics	3	1	0	4	4
Disc	cipline Cent	ric Skill based courses						
9	5	SBS PHY 01 201 DCEC 3024	Computational Physics	3	0	2	5	4
10	6	SBS PHY 01 203 DCEC 3104	Analog Electronics	3	1	0	4	4
Gen	eric Electiv	e Courses (for students of other I	Departments)					
13	5	SBS PHY 01 202 GEC 3104	Environmental Physics	3	1	0	4	4
12	6	SBS PHY 01 201 GEC 2002	Latex for Humans	1	0	2	3	2

SEMESTER-III (28-Credits)

Sr. No.	Course No	Course Code	Course Title	L	Т	P	H rs / W e e k	Tota l Cred its
Core	Courses							
1	11	SBS PHY 01 301 CC 3104	Atomic, Molecular Physics and Lasers	3	1	0	4	4
2	12	SBS PHY 01 302 CC 3104	Nuclear and Particle Physics	3	1	0	4	4
3	13	SBS PHY 01 303 CC 3104	Solid State Physics	3	1	0	4	4
4	14	SBS PHY 01 304 CC 3104	Laboratory III	0	0	12	1 2	6

Disc	cipline Cent	tric Elective Courses						
5	7	SBS PHY 01 301 DCEC 3104	Physics of Electronic Materials and Devices	3	1	0	4	4
6	8	SBS PHY 01 302 DCEC 3104	Nuclear Reactor Physics	3	1	0	4	4
7	9	SBS PHY 01 303 DCEC 3104	Plasma Physics and Fusion Reactor	3	1	0	4	4
8	10	SBS PHY 01 304 DCEC 3104	Physics of Nanomaterials	3	1	0	4	4
9	11	SBS PHY 01 306 DCEC 3104	General Theory of Relativity	3	1	0	4	4
10	12	SBS PHY 01 309 DCEC 3104	Astrophysics of Stars	3	1	0	4	4
Disc	ipline Cent	tric Skill based courses						
11	13	SBS PHY 01 305 DCEC 3024	Characterization Techniques for Materials	3	0	2	5	4
12	14	SBS PHY 01 307 DCEC 3104	Digital Electronics and Microprocessor	3	1	0	4	4
13	15	SBS PHY 01 308 DCEC 3104	Programming with Python	3	1	0	4	4
14	16	SBS PHY 01 309 CC 0202	Seminar Presentation	0	2	0	2	2
15	17	SBS PHY 01 310 CC 2002	Research and Publication Ethics	2	0	0	2	2

SEMESTER-IV (16-Credits)

Sr. No.	Course No	Course Code	Course Title		Т	P	Hr s/ W ee k	Tota l Cred its
Majo	or Researc	h Project				•		
1	1	SBS PHY 01 401 PROJ 000	Dissertation	0	0	0	16	16
Disc	ipline Cen	tric Elective Courses	1	<u> </u>	l		ı	l
2	18	SBS PHY 01 401 DCEC 3104	Advanced Nuclear Physics	3	1	0	4	4
3	19	SBS PHY 01 402 DCEC 3104	Particle Physics	3	1	0	4	4
4	20	SBS PHY 01 404 DCEC 3104	Cosmology	3	1	0	4	4
5	21	SBS PHY 01 406 DCEC 3104	Ferroelectricity and Magnetism	3	1	0	4	4
6	22	SBS PHY 01 408 DCEC 3104	Advanced Carbon Materials	3	1	0	4	4
Disc	ipline Cen	tric Skill based courses						
7	23	SBS PHY 01 403 DCEC 3104	Experimental Techniques in	3	1	0	4	4

			Nuclear and Particle Physics					
8	24	SBS PHY 01 405 DCEC 3104	Astronomy Laboratory	3	1	0	4	4
9	25	SBS PHY 01 407 DCEC 3104	Vacuum Science and Thin			0	4	4
			Film Technology					
10	26	SBS PHY 01 409 DCEC 3104	Minor Project	3	1	0	4	4
11	27	SBS PHY 01 410 DCEC 3104	Introduction to Hydrogen		1	0	4	4
			Energy Systems					

Note:

- This GEC* courses offered by the Department can only be taken by the students of other Departments. The students of the Physics Department will take GEC from other Departments.
- The Department may offer more than one discipline centric elective courses (DCECs) depending on specialization and strength of faculty members, and the number of students have to opt one of them for semester II. If class strength is less than 10, then that particular subject will not be offered.
- In semester III, students are required to opt two DCEC (courses) out of more than two courses offered by the Department, depending on the specialization and strength of the faculty.
- In semester IV, the students have to opt four DCEC (courses) out of options offered by the Department or Students may opt for full semester major research project.

8. COURSE-LEVEL LEARNING OUTCOMES

Course Structure

Mathematical Methods in Physics I

Scheme Version:	Name of the	L	T	P	С	Semester:	Contact Hours
version:	subject:						nours
	Mathematical						per
2021-22	Methods in					I	Week: 4
	Physics I					(1st Year)	Total
		3	1	0	4		Hours:

							60					
Subject	Applicable to	Evalu		30	Evamina	tion Durat	tion: 2					
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	Marks	hours	uon Durai	1011: 3					
PHY 01 101	M.Sc. Physics	(Total	CIE	70		site of Cou	rea R Sc					
CC 3104	Wi.Sc. Thysics	Mark	TEE	Marks	Trerequis	Site of Cou	11 5C. D.SC.					
CC 3101		S:		IVIAIKS								
		100)										
Course	This course has	,	developed	to introdu	ce students	s to some	topics of					
Description	mathematical Ph	ysics wh	ich are dire	ctly releva	int in differ	n different papers of Physics						
_	course. It include	-		•			•					
	algebra, function			Ũ								
	to computational		-		_							
Course	•	-	bout matric			r J 5255 C						
Objectives		_	ding basics	_	-							
Objectives			know the si			x algebra						
		_	ding Numer	_		_						
	After successful	complet	tion of the	course the	e student v	vill be abl	e to do the					
	following:											
	CO101C.1 : To use matrices for solving linear algebraic equations and to use											
Course	group theory for	understa	nding of cry	stallograp	phy.							
Outcomes		01C.2 : To use tensor transformation and related algebra in physics.										
Outcomes	CO101C.3 : To s				•							
	CO101C.4 : To			· ·		•	e properties					
	of a statistical dis		_				Properties					
			or point pe									
			RSE SYLI									
Unit No.		Conte	nt of Each	Unit			rs of Each					
	Matina	(T)		0.4	(.) .		Unit					
	Matrices and Grand CO101C.1	roup 1 no	eory : [Cou	rse Outco	me(s):							
	Linear vector	snaces	matrix en	aces line	ar operato	re						
	eigenvectors and	-	-		-							
1	matrices. Symn	_		_			15					
	representations,		-									
	groups, O(N) and	-										
	m		6	() ~~:	04.07.43							
2	Tensors Analysis	_			_	. 15						
	Coordinate tran		*	*		nd						
	covariant vector	s, mixed	and cova	riant tens	or of secon	nd						

rank, addition, subtraction and contraction of tensors, quotient rule. Christoffel symbols, transformation of Christoffel symbols, Covariant differentiation, Ricci's theorem, divergence, Curl and Laplacian tensor form, Stress and strain tensors, Hook's law in tensor form.	
Complex Variables: [Course Outcome(s): CO101C.3] Functions of complex variable, Limits and continuity, differentiation, Analytical functions, Cauchy-Riemannn conditions, Cauchy Integral theorem, Cauchy integral formula, Derivatives of analytical functions, Liouville's theorem. Power series Taylor's theorem, Laurent's theorem. Calculus of residues—poles, essential singularities and branch points, residue theorem, Jordan's lemma, singularities on contours of integration, evaluation of definite integrals.	15
Computational Techniques and Probability Theory: [Course Outcome(s): CO101C.4] Root of functions, interpolation, extrapolation, Integration by trapezoid and Simpson's rule, solution of first order differential equation: using Runge-Kutta method and Finite difference methods., Preliminary Concepts: mean values, standard deviation, various moments; Random walk problem, Binomial distribution, Poisson distribution, Gaussian distributions, Lorentz distribution, Central Limit Theorem.	15
TEXT BOOKS	

TEXT BOOKS

- 1. Fredrick W. Byron and Robert W. Fuller, Mathematics of Classical and Quantum Physics, Dover Publications, Mineola, New York, Vol 1&2, 1970.
- 2. **Merle C. Potter and Jack Goldberg**, Mathematical Methods, S.CHAND (Prentice Hall of India), New Delhi, 2nd Edition, 1987.
- 3. **George Arfken and Hans J Weber**, Mathematical Methods for Physicists, Elsevier Academic Press. Cambridge, Massachusetts, 7th Edition 2012
- 4. **L. A. Pipe**, Applied Mathematics for Engineers and Physicists, Dover Publication Inc., Mineola, New York 3rd Edition 2014.
- 5. **E. Kreyszig**, Advanced Engineering Mathematics, John Wiley & Sons. Hoboken, New Jersey (United States), 10th Edition, 2015.
- 6. **K. F. Riley, M.P. Hobson, and S. J. Bence,** Mathematical methods for Physicists and Engineers, S. CHAND (Cambridge University Press), New Delhi, 3rd edition, 2018.
- 7. V. BALAKRISHNAN, Mathematical Physics with Applications, Problems and

Classical Mechanics

Scheme	Name of the	L	T	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Classical						Week: 4
	Mechanics						Total

2021-22		3	1	0	4	1	Hours: 60
						(1 st Year)	
Subject Code:	Applicable to	Evaluation		30	Examir	 nation Duratior	1:3 hours
SBS PHY 01 102 CC 3104	Programs: M.Sc. Physics	(Total	CIE	Marks			
	,	Marks: 100)	TEE	70 Marks	Prereq	uisite of Cours	e: None
Course Description	they are able to	understand th	ne Lagran	gian & Ha	I Mechanics to the students so that miltonian mechanics of systems of eir applications in various branches		
Course Objectives	• To get Hamilt	onian formulat	arious clas	ssical mecha	al mechanics hanical problems related to Lagrangian & of classical mechanics in various science		
Course Outcomes	Principle of least action.						
COURSE SYLLABUS							

Unit No.	Content of Each Unit	Hours of Each
		Unit
1	Lagrangian Formulation and Central Force Problem: [Course Outcome(s): CO102C.1] Newtonian mechanics of one and many particle systems, Virtual work, Constraints: holonomic and non-holonomic, D'Alembert's Principle and Euler-Lagrange Equations of motion, velocity dependent potentials, simple applications of Lagrangian formulation. Hamilton's Principle, Calculus of Variations, Derivation of Lagrange's equation from Hamilton's principle. Conservation theorems and Symmetry Properties, Noether's theorem.	15
2	Hamilton's Equations of Motion: [Course Outcome(s): CO102C.2] Generalized momentum, Legendre transformation and the Hamilton's Equations of Motion, simple applications of Hamiltonian formulation, cyclic coordinates, Routh's procedure, Hamiltonian Formulation of Relativistic Mechanics, Derivation of Hamilton's canonical equation from Hamilton's variational principle. The principle of least action.	15
3	Canonical Transformation and Hamilton-Jacobi Theory: [Course Outcome(s): CO102C.3] Canonical transformation, integral invariant of Poincare, Lagrange's and Poisson brackets as canonical invariants, equation of motion in Poisson bracket formulation. Infinitesimal contact transformation and generators of symmetry, Liouville's theorem. Hamilton-Jacobi equation and its application. Action angle variable: adiabatic invariance of action variable, the Kepler problem in action angle variables.	15
4	Small Oscillations and Rigid Body Motion: [Course Outcome(s): CO102C.4 & CO102C.5] Stable and unstable equilibria; Theory of small oscillations in Lagrangian formulation, normal coordinates and its applications, Free vibrations of linear triatomic oscillator. Orthogonal transformation, Eigenvalues of the inertia tensor, Euler equations, Eulerian angles, moment of Inertia.	15

Two body central force problem: Reduction to equivalent one body problem, equation of motion and first integrals, Equivalent one-dimension problem and classification of orbits. Coriolis force.

TEXT BOOKS

- **1. A.Sommerfeld,** Mechanics, Academic Press, United States, 1st Edition, 1952.
- **2. I. Percival and D. Richards**, Introduction to Dynamics, Cambridge University Press, 1st Edition1982.
- 3. Ronald L. Greene, Classical Mechanics with Maple, Springer, Germany, 2nd Edition, 2000.
- **4. Herbert Goldstein, Charles Poole, John Safko,** Classical Mechanics, Pearson Education, UK, 3rd Edition, 2011.
- **5. L.D. Landau and E.M. Lifshitz,** Mechanics, Butterworth-Heinemann, UK, 2nd Edition, 2012.
- **6. N.C. Rana and P.S. Joag,** Classical Mechanics, Tata McGraw Hill, New Delhi, 1st Edition, 2015.

QUANTUM MECHANICS - I

Scheme Version: 2021-22	Name of the subject: Quantum Mechanics – I	3	1	P 0	C	Semester: I (1st Year)	Contact Hours per Week: 4 Total Hours: 60
Subject Code: SBS PHY 01 103 CC 3104	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks: 100)	CIE	30 Marks 70 Marks	Examination Duration: 3 hours Prerequisite of Course: Graduation Level Quantum Mechanics		
Course Description Course Objectives	This course is designed for fundamental knowledge of quantum mechanics, which has comprehensive and rich applicability in condensed matter physics, atomic and molecular physics, nuclear physics, space science, and chemistry. • To understand the fundamentals of quantum mechanics • To make familiar with various quantum mechanical problems related to vector space, eigenvalue, Schrödinger equation, free particle, harmonic oscillator, potential barrier and well, angular momenta etc.						
Course Outcomes	To aware the students about applications of quantum mechanics in various science branches After completetion of this course, students will be able to CO103C.1. explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various quantum mechanics problems					tors, Dirac's	

CO103C.2. understand the uncertainty relation between two arbitrary operatorsCO103C.3. distinguish the actual meaning of time independent and time dependent

CO103C.4. illustrate Ehrenfest theorem, Poisson Brackets, wave packets and wave functions in position and momentum space

CO103C.5. analyze the energy eigenvalues and wave functions of harmonic oscillator, infinite

and finite square wells, free particle, and hydrogen atom

CO103C.6. determine the transmission and reflection coefficients of potential barrier and well,

potential step, and delta function well

Schrodinger's equations

CO103C.7. recognize the importance of angular momentum and its applications in quantum

mechanics

CO103C.8. explain the physics behind the addition of angular momenta

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Mathematical Tools of Quantum Mechanics [Course Outcome(s): CO103C.1 & CO103C.2] Vector Spaces, Linear Independence, Bases, Dimensionality, Linear Transformations, Similarity Transformations, Eigen Values and Eigen Vectors, Inner Product, Orthogonality and Completeness, Hilbert Space, Hermitian and Unitary Operators, Orthonormality, Completeness and Closure, Dirac's Bra and Ket Notation, Matrix Representation and Change of Basis, Operators and Observables, Commutation Relations, Uncertainty principle for two arbitrary Operators.	15
2	Quantum Dynamics [Course Outcome(s): CO103C.3, CO103C.4 & CO103C.5]	15
	Time Evolution Operator, Stationary States, Schrodinger	

	Equation, The Schrodinger versus the Heisenberg Picture, The Infinite Square Well and the Simple Harmonic Oscillator: Energy Eigenvalues and Energy Eigenstates, Connecting Quantum to Classical Mechanics: The Ehrenfest Theorem; Poisson Brackets and Commutators, Wave Packets, Wave Functions in Position and Momentum Space.	
3	Quantum Mechanics in One and Three Dimensions [Course Outcome(s): CO103C.5 & CO103C.6] Properties of One Dimensional Motion: Bound States and Scattering States, The Free Particle, The Potential Step, The Potential Barrier and Well, The Finite Square Well, The Delta-Function Well, Three Dimension Problems: Hydrogen Atom.	15
4	Angular Momenta and Approximate Analysis [Course Outcome(s): CO103C.7 & CO103C.8] Orbital angular momentum, General Formalism of Angular Momentum, Eigenfunctions and Eigenvalues of Orbital Angular Momentum, Addition of Angular Momenta, Spin Angular Momentum: Stern-Gerlach Experiment; Pauli Matrices and Spinors, Clebsch-Gordan Coefficients.	15

TEXT BOOKS

- 1. **L. D. Landau and E.M. Lifshitz**, Quantum Mechanics, Butterworth Heinemann, The Netherlands, 3rd Edition, 1981.
- 2. **P. A. M. Dirac**, The Principles of Quantum Mechanics, Oxford University Press, UK, 4th Edition, 1988.
- 3. **R. Shankar**, Principles of Quantum Mechanics, Springer, Germany, 2nd Edition, 1994.
- 4. **N. Zettili**, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2nd Edition, 2009.
- 5. **J. J. Sakurai**, Modern Quantum Mechanics, Pearson, India, 2nd Edition, 2013.
- 6. **L. I. Schiff**, Quantum Mechanics, McGraw Hill Education, USA, 4th Edition, 2017.
- 7. **D. J. Griffiths**, Introduction to Quantum Mechanics, Cambridge University Press, UK, 3rd Edition, 2018.
- 8. **C. Cohen-Tannoudji, B. Diu, and F. Laloe**, Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, USA, 2nd Edition, 2019.

Semiconductor Devices

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Semiconductor						Week: 4
2024 22	Devices						Total
2021-22		3	1	0	4	ı	Hours: 60
		3	1	U	_	(1 St V 0 0 r)	
						(1 st Year)	
Subject Code:	Applicable to	Evaluation		30	Examir	nation Duration	1: 3 hours
SBS PHY 01	Programs: M.Sc.	(Total	CIE	Marks			
104 CC 3104	Physics	Marks: 100)	CIL				
		•		70	Prereq	uisite of Course	e: None
			TEE	Marks			
Course	The objective of the						miconductor
Description	physics, physical p	rinciple of devi	ces and	their basic	applicat	ions.	
Course	An unders	tanding of basi	c semico	onductor de	evice phy	ysics	
Objective	 Δn unders 	tanding of the	annlicat	ion of Field	-Fffect T	ransistors	
	, in anaers		аррисас		2110001	141131313131	
	An unders	tanding of the	applicat	on of Bipo	lar Junct	ion Transistors.	
Course	On completion of t	the course, stu	dent wo	uld be able	:		
Outcomes	CO104C.1. To und	arstand the ha	acic pro	parties of s	comicon	ductors includi	ng the hand
	gap, charge carrier						_
	CO104C.2. To und		o find th	ie Fermi er	nergy lev	el and carrier o	density in n-
	type and p-type se	miconductors.					
	CO104C.3. To und	erstand basic	properti	es of PN j	unctions	and Metal-Ser	miconductor
	junction.						
	CO104C.4. To u	nderstand th	e work	ing, desig	gn and	applications	of various
	semiconducting de			-			

CO104C.5. To understand the working, design, and applications of BJTs and FETs.

CO104C.6. To understand the working, design and applications of Operational amplifier

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Semiconductors [Course Outcome(s): CO104C.1 & CO104C.2] Energy Band and Charge Carriers: Energy bands in semiconductors, Types of semiconductors: Intrinsic and extrinsic materials. Carrier concentration: Fermi Level, Electron and hole concentration in equilibrium, Temperature dependence of carrier concentration, Compensation and charge neutrality. Conductivity and mobility: Effect of temperature, Doping and high electric field, Hall Effect.	15
2	Junctions [Course Outcome(s): CO104C.3 & CO104C.4] p-n junction and contact potential, Fermi levels, Space charge, Reverse and Forward bias, Zener and Avalanche breakdown. Capacitance of p-n junction, Diode Applications: Load-Line Analysis, Series Diode Configurations, Parallel and Series-Parallel Configurations (AND/OR Gates), Half-Wave Rectification, Full-Wave Rectification, Clippers, Clampers. Network with a DC and AC Source, LED, Solar cell and photodetectors, Metal-Semiconductor contact: Rectifying contact and Ohmic contact.	15
3	Bipolar Junction Transistors (BJT) [Course Outcome(s): CO104C.5] Fundamentals of BJT, BJT Operation: Common-Base Configuration, Common-Emitter Configuration, Common-Collector Configuration, Limits of Operation, Minority carrier distribution, BJT DC Biasing: Operating Point, Fixed-Bias Configuration, Emitter-Bias Configuration, Voltage-Divider Bias Configuration, Collector Feedback Configuration, Emitter-Follower Configuration, Field Effect Transistors: JEFT: Construction and Characteristics of JFETS, Transfer Characteristics, MOSFET: Depletion-Type MOSFET, Enhancement-Type MOSFET, Transfer Characteristics.	15

Operational Amplifiers [Course Outcome(s): CO104C.6]

Differential amplifier (DA)- Basic circuit of differential amplifier Operation of differential amplifier: Common-mode rejection ratio (CMRR), DC analysis of differential, Applications of OP-amp: Inverting amplifier-Input and impedance of inverting amplifier, Noninverting amplifier-Voltage follower, Effect of negative feedback on OP-amp in feedback circuits, Summing amplifiers-Applications of summing amp, OP-amp as integrators and differentiators.

TEXT BOOKS

- 1. J.J. Cathey, Schaum's Outline of Electronic Devices and Circuits, McGraw Hill, New York, 2nd Edition 2002.
- 2. B. Streetman and S. Banerjee, Solid State Electronics, Prentice Hall India, New Delhi, 6th Edition, 2006.
- 3. Millman and Halkias, Integrated Electronics, McGraw Hill, New York, 2nd Edition 2009.
- 4. A.P. Malvino, Electronic Principles, McGraw, New Delhi, New York 7th, Edition, 2009.
- 5. **J.H. Moore, C.C. Davis and M.A. Coplan**, Building Scientific Apparatus, Addison Wesley, United States, 4th Edition 2009.
- 6. **R.L. Boylestad and L. Nashelsky**, Electronics Devices and Circuit Theory, Prentice Hall of India, New Delhi, 11th Edition, 2013.
- 7. P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 3rd Edition, 2015.

4

LABORATORY I

Scheme Version:	Name of the subject: Laboratory I	L	Т	Р	С	Semester:	Contact Hours per Week: 12	
2021-22		0	0	12	6	l (1 st Year)	Total Hours: 180	
Subject Code:	Applicable to	Evaluation		30	Examin	ation Duration	: 3 hours	
SBS PHY 01 105 CC 00126	Programs: M.Sc. Physics	(Total Marks:	CIE	Marks				
	ivioe. Triyotes	100)	TEE	70 Marks	Prerequ	erequisite of Course: None		
Course Description	The objective of the lab 1 is to train students to perform various experiments associated with Electronics, Quantum physics, Waves mechanics and Spectroscopy. Students assigned the general laboratory work will perform at least ten (10) experiments of the above mentioned list of Physics experiments and further 8 experiments from the C programming section Experiments of equal standard may be added. Workshop soldering and designing of experiments should be included							
Course Objectives	 To give hands on experience to students for generating magnetic field and measurement of various parameters. To teach how temperature controlled oven works To take measurements of current and voltage using various equipment 							
Course	After completition	on of this cour	se, the st	udents wi	ll be able	to		

Outcomes	CO105C.1. learn various Physics aspects by performing the experiments related to electronic devices, atomic and molecular physics, light wave, sound waves etc.
	CO105C.2. Learn Error analysis
	CO105C.3. Use excel for plotting graphs
	CO105C.4. to do C programming

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	 Hall Effect Four Probe Method to find band gap of semiconductor Electron Spin Resonance Frank-Hertz experiment PN Junction characteristics Solar cell characteristics Velocity of ultrasonic wave in liquids Characteristics of MOSFET Diode as voltage regulator Ionization potential of mercury Planck's constant using LED Law of Malus Zener diode characteristics 	150
2	 Urite a Program to calculate and display the volume of a CUBE having its height, width and depth. Write a C program to perform addition, subtraction, division and multiplication of two numbers Write a program to input two numbers and display the maximum number. Write a program to find the largest and smallest among three entered numbers and also display whether the identified largest/smallest number is even or odd. Write a program to find the roots of quadratic equation. Write a program to check whether the entered year is leap year or not (a year is leap if it is divisible by 4 and divisible by 	30

100 or 400.)

- 7. Write a program to find the factorial of a number.
- 8. Write a program to check number is Armstrong or not.
- 9. Write a program to find GCD (greatest common divisor or HCF) and LCM (least common multiple) of two numbers
- 10. Write a program to generate Fibonacci series.

TEXT BOOKS

- 1. **Worsnop and Flint,** Experimental Physics, Little hampton Book Services Ltd, United Kingdom, 9th Edition, 1951.
- 2. **A. C. Melissinos, J. Napolitano,** Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.
- 3. Lab manuals, prepared by faculty of the Department of Physics, 2018.

Numerical Methods and Programming

Scheme Version:	Name of the subject:	L	T	P	С	Semeste	er:	Contact Hours
	Numerical					et		per
2021-22	Methods and					I (1 st Yea	ar)	Week: 4
	Programming	1	1	2	4			Total Hours: 60
Subject Code: SBS	Applicable to Programs:	Evaluation (Total	CI	30 Marks	Exam hours	ination D	Ourat	
PHY 01 101	M.Sc.	Marks: 100)	E					
GEC 2124			T E E	70 Marks		quisite of Mathemat		rse: B.Sc.
Course	This course teac	hes the student	s to	solve basi	c probl	ems of m	nathe	matics and
Description	sciences with the	help of an appr	oxim	ation and a	a compu	iter.		
Course Objectives	 To make the student 1) Understand basics of a Programming Language 2) Aware of various Numerical methods. 3) Able to create hypothetical data sets for Physical Systems. 4) familiar with random sampling of large data sets. 							
Course Outcomes	Students will be able to learn: CO101G.1: to write a computer program in C. CO101G.2: the solutions of linear and non-linear equations along with solutions of simultaneous linear equations.							
	CO101G.3 : Nu	merical differen	tiatio	n and integ	gration.			
	CO101G.4: Morworld.	nte Carlo metho	ds an	d its applic	cation to	problem	s of p	physical
		COURSE S	YLL	ABUS				
Unit No.		Content of E	Each 1	Unit				rs of Each Unit
1	Control statemen Subroutines and	lgorithms, Inp ts, Arrays, Repe functions.						15
2	Numerical Methology CO101G.2, CO1		[Cou	rse Outco	ome(s):			35

		Roots of a function, Solution of simulteneous linear equation, Interpolation and curve fitting, Numerical differentiation and integration, Solution of ordinary differential equations	
		Simulations I: [Course Outcome(s): CO101G.3, CO101G.4]	
3		Generation of random numbers, Statistical tests of randomness,, Monte-Carlo evaluation of integrals and Error Analysis.	35
	4	Simulations II : [Course Outcome(s): CO101G.4] Inhomogeneous distribution and Importance of data	20
		sampling, Metropolis algorithm, Brownian motion as random walk problem and its Monte-Carlo simulation.	
		TEVT DOOKS	

TEXT BOOKS

- **1. S. S. M. Wong,** Computational Methods in Physics and Engineering, World Scientific, Singapore, 2nd Edition, 1997.
- **2. C. F. Gerald,** Applied Numerical Analysis, Pearson/Addison Wesley, UK, 7th Edition, 2003.
- **3. Teukolsky, Vetterling and Flannery,** Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd Edition 2007.
- **4.** Landau and Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 3rd Edition, 2013.
- **V. Rajaraman,** Computer Oriented Numerical Methods, Prentice Hall of India, New Delhi, 4th Edition, 2015.
- **6. V. Rajaraman,** Computer Programming in FORTRAN 90/95, Prentice Hall of India, New Delhi, 1st Edition, 2015.

Modern Optics

Scheme Version:	Name of the subject: Modern Optics	L	Т	P	С	Semester:	Contact Hours per Week: 4
2021-22		3	1	0	4	l (1 st Year)	Total Hours: 60
Subject Code: SBS PHY 01 102 GEC 3104	PHY 01 Programs: M.Sc.	Evalua tion	CIE	30 Marks	Examination Duration: 3 hours		
102 020 310 1		(Total Marks: 100)	TEE	70 Marks	Prerequisite of Course: B.Sc. with Physics		
Course Description	The course has focus on the Geometrical and wave optics, thin films, Holography, optical fiber, liquid crystals, LED and Photonic band gap crystals.						
Course Objectives	 To understand the fundamentals of optics. To impart knowledge about different physical phenomena. To update the students with the latest technologies. 						
Course Outcomes	After completetion of this course, students would be able to: CO102G.1. Understand the various physical phenomena & their real life applications. CO102G.2. Learn about the wave optics and holography. CO102G.3. Get knowledge about the basics of Lasers. CO102G.4. Learn about the fiber optics & LED.						

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	An overview of Geometrical and Wave Optics: [Course Outcome(s): CO102G.1] Laws of Reflection, Refraction, Total Internal Reflection; Ideas of Interference, Diffraction, Polarization, Dispersion.	15
2	Fresnel Relations: [Course Outcome(s): CO102G.2] Conductors, Thin Films: Reflection Model, Matrix Formalism, Coating Design, Fourier Optics: Wave Propagation, Fraunhofer Diffraction, Fresnel Diffraction, Spatial Filtering, Holography and Holograms.	15
3	Coherence, Interference and Visibility, Laser Physics: [Course Outcome(s): CO102G.3] Overview, Gain Saturation, Light-Atom Interactions, Optical Gain and Pumping Schemes, Output Characteristics, Light Shifts and Optical Forces, Atom-Photon interactions.	15
4	Fiber Optics: [Course Outcome(s): CO102G.4] Mode Analysis, Single mode and multimode optical fiber, Loss and Dispersion, Photonics Band-gap Crystals, Liquid crystals, Introduction of LED.	15

- 1. 1. A. E. Siegman, Lasers, University Science Book, USA, Revised Edition, 1986.
- **2. G. R. Fowles,** Introduction to Modern Optics, Dover Publication, USA, 2nd Edition, 1989.
- **3. J. T. Verdeyen,** Laser Electronics, Prentice-Hall, India, New Delhi, 3rd Edition, 1995.
- **4. E. Hecht,** Optics, Addison Wesley, USA, 4th Edition, 2001.
- **5.** Pedrotti,Introduction to Optics, Pearson UK, 3rd Edition, 2006.
- **6. B. E. A. Saleh and M. C. Teich,** Fundamentals of Photonics, Wiley, United States, 2nd Edition, 2012.
- 7. A. Ghatak, Optics, Tata McGraw-Hill, New Delhi, 6th Edition, 2017.

Physics of Digital Photography

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	subject:						Hours per	
	Physics of Digital						Week: 4	
2021-22	Photography	3	1	0	4	l (1 st Year)	Total Hours: 60	
Subject Code:	Applicable to	Evaluation		30	Evamir	ation Duration	· 3 hours	
SBS PHY 01	Programs: M.Sc.	Evaluation		Marks	LXaiiiii		1. 5 Hours	
103 GEC 3104	Physics	(Total Marks: 100)	CIE	IVIAIKS				
		200,		70	Prereq	uisite of Course	e: B.Sc. with	
			TEE	Marks	Physics			
Course	The aim of this course is to provide a theoretical overview of the photographic imaging							
Description	chain. The course is intended to serve as a link between imaging science and							
	photographic practice.							
Course	To become	e proficient at t	he tec	hnical aspe	ect of pl	notographing w	ith a digital	
Objective	camera.							
	To develop and practice skills using digital photography tools and the Internet including emailing and posting to a web site							
	·	the habit of loc	_	•			•	
	· ·	nt it in terms of			•	uth. – To look	at what you	
	are seeing	and to see what	you a	re looking a	at.			
Course	On completion of t	the course, stude	nt wo	uld be able	:			
Outcomes	CO103G.1. To und	erstand the phot	ograp	hic optics 8	k metho	ds		

CO103G.2. To understand the	basic principle of photography
-----------------------------	--------------------------------

CO103G.3. To understand the theory of exposure

CO103G.4. To understand about the image quality

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Fundamental optical formulae [Course Outcome(s): CO103G.1] Image formation: Refraction, Gaussian optics, Lens refractive power, Magnification, Focal length, Lens focusing movement Field of view: Entrance and exit pupils, Chief and marginal rays, Angular field of view, Field of view area, Focal-length multiplier, Depth of field: Circle of confusion, Depth of field equations, Hyperfocal distance, Focus and recompose limits, distortion, Exposure: Photometry, Flux emitted into a cone, Relative aperture, f-number, Working f-number, f-stop, Natural vignetting, Photometric exposure, Exposure value, f-number for aplanatic lenses	15
2	History of photography [Course Outcome(s): CO103G.2] Pinhole Camera, Camera Obscura, Normal Human Eye and Process of Seeing-Human eye and camera, Camera principles: Compact cameras and SLR's - Working of SLR camera- Different image sensors-CCD and CMOS. Angle of view- Different types of lensesnormal lens, wide angle lens, fish eye lens, prime lens, telephoto lens. Depth of Field-Shallow depth of field, large depth of field, Depth of focus - circles of confusion	15
3	Exposure strategy [Course Outcome(s): CO103G.3] Digital output, Sensor response, Colour, Digital output levels, Dynamic range, Tonal range, Tone reproduction, Gamma, Tone curves, Histograms, verage photometry, Reflected-light metering, Average scene luminance, Exposure index, ISO speed, Standard output sensitivity, Exposure modes: Metering modes, Exposure compensation, Aperture priority (A or Av), Shutter priority (S or Tv), Program mode (P), Manual mode (M)	15

	Image quality [Course Outcome(s): CO103G.4]	
4	Colour temperature, White balance, Color space, Lens MTF, sharpness, Signal-to-noise ratio, Different Image capturing formats: RAW, TIFF, JPEG, Storage Devices- SD card CF card, Principles of Composition: Perspective - Space (Negative and Positive), Directional lines-Golden Section and Rule of the Third, Colour Theory	15

- **1. Steven Heller**, A History of Photography: From 1839 to the Present
- **2. Tom Ang,** Photography: The Definitive Visual History
- **3. Todd Gustavson** and **George Eastman House**, Camera: A History of Photography from Daguerreotype to Digital by Understanding Exposure, Fourth Edition by BRYAN PETERSON.
- **4. DK**, Digital Photography Complete Course Hardcover
- 5. **Fil Hunter, Steven Biver and Paul Fuqua**, Light Science & Magic: An Introduction to Photographic Lighting by Understanding Color in Photography by Bryan Peterson.
- 6. Andy Rowland, Physics of Digital Photography by (IOP Publishing).

INTRODUCTION TO RENEWABLE ENERGY RESOURCES

Scheme Version:	Name of the Subject: Introduction to	L	T	P	С	Semester:	Contact hours per			
2021-2022	Renewable Energy		1			T (1St 37)	week: 2			
	Resources	3	1	0	4	I (1st Year)	Total Hours: 30			
Subject Code: SBS PHY 01 104	Applicable to Programs:	Evaluation (Total	CIE	30 Marks	Exam	ination Duratio	on: 3 hours			
GEC 2002	M.Sc. Physics	Marks): 100	TEE	70 Marks	with 1	requisite of course: 10- Non-Medical				
Course Description		To introduce the pattern of fuel consumption, energy demand, various renewable sources of energy and modern applications.								
Course	27	ts the basics of v	arious rer	newable ene	rgv reso	ources and energ	v generation			
Objectives		methods; it is sui				_				
Course	On completion of this co	ourse, student wil	l learn:							
Outcomes:	CO104C 1 The Comme				.1	N C	-1 f			
	CO104G.1 The Course			_			ai sources of			
	energy technologies and CO104G.2 The Course	•	-	•			nology This			
	will enable them to und									
	applications.	ierstand the requ	nements	101 1 7 1114	criais a	ind i v systems	ior different			
	CO104G.3 It creates av	vareness among s	students a	bout wind	and geo	thermal energy	technologies			
	and provide adequate in	•								
	CO104G.4 To teach fur				ergy sy	stems, production	on processes,			
	storage, utilization, and	safety that is nece	essary for	taking som	e impor	tant elective sub	jects.			
	CO104G.5 It increases	the potential for	job oppo	rtunities in	automo	tive industries a	nd hydrogen			
	production & its infraction consumed by automotive		pment re	lated sector	rs as a	bout 40% ener	gy is being			
	CO104G.6 To give an		erent bio	mass and	nuclear	as energy sour	ce and their			
	processing and utilization									
	knowledge of how wast	-				_	_			
	students from all fields.									
		CO	URSE SY	LLABUS						
Unit No.	C	ontent of Each U	U nit			Hours of E	ach Unit			
1.	Energy Scenario and CO104G.1 & CO104G.		[Course	Outcome	(s):	15				
	Global and Indian	_	o and	Energy P	olicv.					
	Commercial and Nonco	0.		~	•					
	Renewable Sources, Im			.						
	Need for use of New		-		l I					
	Thermal and Solar Photo									

2.	Wind and Geothermal Energy: [Course Outcome (s): CO104G.3] Wind Energy Basics- Global circulation, Forces influencing Wind - Pressure gradient force and Coriolis force, Local and Regional Wind systems, Geothermal Tidal and Wave Energy, Geothermal regions, geothermal sources, Geothermal energy conversion technologies.	15
3.	Hydrogen Energy and Fuel cells: [Course Outcome (s): CO104G.4 & CO104G.5] Hydrogen Energy-production and storage, Production Processes: Thermo chemical Water Splitting, Gasification, Pyrolysis methods. Electrochemical, Electrolysis, Photo electro chemical. General storage methods, compressed storage, Zeolites, Metal hydride storage, chemical hydride storage and cryogenic storage. Fuel cells- Thermodynamics and performance of Fuel Cells, Its working, construction, classifications and applications.	15
4.	Biomass and Nuclear Energy: [Course Outcome (s): CO104G.6] Biomass Energy and application, Techniques for biomass assessment, Thermochemical conversion of biomass, Mini/micro hydro power: classification of hydropower schemes, Nuclear Energy: Fission, Fusion, Different type of nuclear reactors, Nuclear waste disposal and environment measures.	15

REFERENCE BOOKS

- 1. Solar Energy: S. P. Sukhatme, (Tata McGraw Hill).
- 2. Garg .H.P,Prakash .J, "Solar energy fundamentals and applications", Tata McGraw Hill publishing Co. Ltd, 2006
- 3. Xianguo Li, Principles of Fuel Cells, Taylor and Francis, 2005.
- 4. Fundamentals of Renewable Energy Processes, Aldo Vieira da Rosa, Elsevier Academic Press.
- 5. J Twidell and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), New York, USA, 2006.
- **6.** KC Khandelwal, SS Mahdi, Biogas Technology A Practical Handbook, Tata McGraw Hill, 1986.
- 7. EH Lysen, Introduction to Wind Energy, CWD Report 82-1, Consultancy Services Wind Energy Developing Countries, May 1983.
- 8. JG Collier and GF Hewitt, Introduction to Nuclear Power, Hemisphere Publishing, New York, 1987.

STATISTICAL MECHANICS

Scheme Version:	Name of the subject: Statistical	L	Т	P	С	Semester:	Contact Hours per Week: 4
2021-22	Mechanics	3	1	0	4	II (1 st Year)	Total Hours: 60
Subject Code: SBS PHY 01 201 CC 3104	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks: 100)	TEE	30 Marks 70 Marks	Examination Duration: 3 hours Prerequisite of Course: Graduation Level Quantum Mechanics and Mathematical		
Course Description	This course is developed for understanding of thermodynamics and statistical mechanics, which have broad and rich applicability in quantum mechanics, condensed matter physics, classical mechanics and electrodynamics.						
Course Objectives	 To understand the fundamentals of thermodynamics and statistical mechanics To make familiar with various thermodynamical and statistical mechanics terms such as entropy, free energy, phase space, statistical ensembles, Bose-Einstein statistics, Fermi-Dirac statistics etc. To able the students for solve the problems related to thermodynamics and statistical physics 						
Course Outcomes	At the end of this course, the students will be able to CO201C.1. explain the various thermodynamical quantities and Maxwell's relations CO201C.2 apply the thermodynamics in ideal gas, magnetic and dielectric materials						

CO201C.3. describe various statistical approaches which describe systems of particles
CO201C.4. evaluate the formulae of random walk and diffusion equation
CO201C.5. compare microstates, macrostates, and statistical ensembles
CO201C.6. understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics
CO201C.7. illustatre the fundamental concepts of Bose-Einstein and Fermi-Dirac Statistics

CO201C.8. calculate the problems related to Bosons and Fermions

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Review of Thermodynamics [Course Outcome(s): CO201C.1 & CO201C.2] Extensive and intensive variables, laws of thermodynamics, Entropy for Different Systems, Gibbs Paradox, Boltzmann Relation for Entropy, Legendre Transformations and Thermodynamic Potentials, Chemical Potential, Free Energy and Its Connection with Thermodynamic Quantities, Maxwell Relations, Applications of Thermodynamics to (a) Ideal Gas, (b) Magnetic Material, and (c) Dielectric Material.	15
2	Statistical Methods and Description of Systems of Particles [Course Outcome(s): CO201C.3, CO201C.4, & CO201C.5] Binomial distribution, Poisson distribution, Gaussian distributions, Central Limit Theorem, Random Walk and Brownian Motion, Diffusion Equation, Phase Space, Liouville's Theorem, Phase Equilibrium, Microstates and Macrostates, Statistical Ensembles, Irreversibility and the Attainment of Equilibrium	15
3	Classical Statistical Mechanics [Course Outcome(s): CO201C.6] Micro-Canonical Ensemble, Canonical Ensemble: Derivation of Partition Function and Thermodynamic Quantities; Mean Values and Fluctuations, Grand Canonical Ensemble: Gibbs Factor; Gibbs Distribution; Derivation of Partition Function and Thermodynamic	15

Quantum Statistical Mechanics [Course Outcome(s): CO201C.7 & CO201C.8] Bosons: Occupation Number; Bose-Einstein Statistics; Debye Theory of Specific Heat; Grand partition function For Ideal Bose Gas; Black-Body Radiation; Bose-Einstein Condensation, Fermions: Occupation Number; Fermi-Dirac Statistics; Ideal Fermi gas, Pauli Paramagnetism, First and Second Order Phase Transitions, Ising Model, Phase Equilibria: Equilibrium Conditions; Simple Phase Diagrams; Clausius-Clapeyron Equation.		Quantities; Fluctuations in the Number of Particles, Applications of Canonical and Grand Canonical Ensembles, Equipartition Theorem and It's Applications, Maxwell-Boltzmann Statistics.	
	4	& CO201C.8] Bosons: Occupation Number; Bose-Einstein Statistics; Debye Theory of Specific Heat; Grand partition function For Ideal Bose Gas; Black-Body Radiation; Bose-Einstein Condensation, Fermions: Occupation Number; Fermi-Dirac Statistics; Ideal Fermi gas, Pauli Paramagnetism, First and Second Order Phase Transitions, Ising Model, Phase Equilibria: Equilibrium Conditions;	15

- 1. **F. Reif**, Fundamental of Statistical and Thermal Physics, McGraw-Hill, USA, 1965.
- 2. L. D. Landau and E. M. Lifshitz, Statistical Physics, UK, 3rd Edition, 1980.
- 3. **D. V. Schroeder**, An Introduction to Thermal Physics, Addison Wesley Longman, UK, 2000.
- 4. **J. P. Sethna**, Statistical Mechanics: Entropy, Order Parameters and Complexity, Oxford University Press, UK, 2006.
- 5. M. Kardar, Statistical Physics of Particles, Cambridge University Press, UK, 2007.
- 6. **H. Gould and J. Tobochnik**, Statistical and Thermal Physics: With Computer Applications, Princeton University Press, USA, 2010.
- 7. **K. Huang**, Statistical Mechanics, Wiley, India, 2nd Edition, 2011.
- 8. **R. K. Pathria and P. D. Beale**, Statistical Mechanics, Academic Press, USA, 2011.

Classical Electrodynamics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Charles						Week: 4
	Classical						T
2021-22	Electrodynamics						Total Hours: 60
		3	1	0	4	Ш	Hours. 00
						(1 st Year)	
Subject Code:	Applicable to	Evaluation		30	Examir	nation Duration	: 3 hours
SBS PHY 01	Programs: M.Sc.	/T	OIE.	Marks			
202 CC 3104	Physics	(Total Marks: 100)	CIE				
		100)		70	Prerequisite of Course: None		
				Marks			
			TEE				
Course	This course is designed for fundamental knowledge of basic electrodynamics and it's						
Description	applications to var	ious phenomena	۱.				
Course	To evaluat	e fields and for	es in l	Electrodyna	amics an	d Magneto dyr	namics using
Objective	basic scien	tific method.					
	• To provide	e concepts of i	·elativi	stic electr	odvnami	ics and its an	nlications in
	· ·	of Physical Science		Stic Ciccui	odynann	ics and its app	oncations in
		, 					
Course	On completion of t	the course, stude	ent wo	uld be able	2:		
Outcomes	CO202C.1. To unde	erstand the basic	s of el	ectrostatic	S		
	CO202C.2. To use	·		•	ng the el	ectromagnetic	field due to
	time varying charg	e and current dis	stribut	ion.			
	CO202C.3. To describe the nature of electromagnetic wave and its propagation through different media and interfaces.						

CO202C.4. The students will be able to analyze s radiation systems in which the electric dipole, magnetic dipole or electric quadruple dominate.

CO202C.5. The students will have an understanding of the covariant formulation of electrodynamics and the concept of retarded time for charges undergoing acceleration.

CO202C.6. To explain charged particle dynamics and radiation from localized time varying electromagnetic sources.

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Electrostatics [Course Outcome(s): CO202.1] Coulomb's law, Guass's law, Poisson's equation, Laplace equation. Simple boundary value problems illustrating various techniques such as method of images, separation of variables, Green's functions, Multipole expansion. Electrostatics of dielectric media, multipole expansion. Boundary value problems in dielectrics; molecular polarisability, electrostatic energy in dielectric media.	15
2	Magnetostatics & Maxwell's Equations [Course Outcome(s): CO202.2] Review of Magnetostatics: Biot-Savart law, Ampere's theorem, Electromagnetic induction, examples of magnetostatic problems, , Scalar and vector potentials, Gauge symmetry, Coulomb and Lorentz gauges Gauge invariance, Displacement current, Time varying fields, Maxwell's equations in free space and linear isotropic media (non conducting) boundary conditions on the fields at interfaces. Poynting theorem, conservation laws for a system of charged particles and electromagnetic field,	15
3	Electromagnetic Waves [Course Outcome(s): CO202.3] Electromagnetic waves in free space, dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, interference, coherence, and diffraction, frequency dispersion in dielectrics and metals, dielectric constant and anomalous dispersion, wave propagation in one dimension, group velocity, metallic wave guides, boundary conditions at metallic surfaces, propagation	15

	modes in wave guides.	
4	Radiation and Relativistic Electrodynamics [Course Outcome(s): CO202.4CO202.5 CO202.6] Lorentz Transformation, Lorentz invariance of Maxwell's equation. Dynamics of charged particles in static and uniform electromagnetic fields. Radiation- from moving charges and dipoles and retarded potentials Field of a localized oscillating source, fields and radiation in dipole and quadrupole approximations, Lienard-Wiechert potentials, Total power radiated	15
	by an accelerated charge, Lorentz formula. Four-vectors relevant to electrodynamics, electromagnetic field tensor and Maxwell's equations, transformation of fields, fields of uniformly moving particles.	

- 1. **L.D. Landau** and E.M. Lifshitz, Classical Theory of Electrodynamics, Butterworth-Heinemann. Germany, 4th Edition, 1987.
- 2. Melvin Schwartz, Principles of Electrodynamics, Dover Publications, UK, 1st Edition, 1987.
- 3. Walter Greiner, Classical Electrodynamics, Springer, Germany, 1st Edition, 1998.
- 4. **J. Schwinger**, L.L. Deraad Jr, K.A. Milton, W-Y. Tsai and J. Norton, Classical Electrodynamics, Westview Press, UK, 1998.
- 5. **David J. Griffiths**, Introduction to Electrodynamics, Benjamin Cummings, USA, 3rd Edition, 1999.
- 6. J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, United States, 2nd Edition, 2003.
- 7. Charles A. Brau, Modern Problems in Classical Electrodynamics, Oxford University Press, 1st Edition, 2003.
- 8. **L. D. Landau** and E. M. Lifshitz & L. P. Pitaevskii, Electrodynamics of Continuous Media Oxford, 1st Edition, 2005.
- 9. **Wolfgang K. H. Panofsky** and Melba Phillips, Classical Electricity and Magnetism, Dover Publications, UK, 2nd Edition, 2012.
- 10. Joseph Edminister, Schaum's outline of electromagnetics, New Delhi, 2nd Edition, 2017.

Mathematical Methods in Physics II

Scheme	Name of the	L	T	P	C	Semester:	Contact	
Version:	subject:						Hours	
	Mathematical					(1et)	per	
2021-22	Methods in					II (1 st Year)	Week: 4	
	Physics II	3	1	0	4		Total Hours:	
		3	1		4		60	
Subject	Applicable to	Evaluation		30	Exam	ination Durat		
Code: SBS	Programs:	(Total	CIE	Mark	hours			
PHY 01 203	M.Sc. Physics	Marks: 100)		S				
CC 3104				70		quisite of Cou		
			TEE	Mark		ematical Metl	hods in	
				S	Physic			
Course	This course has	=					_	
Description	mathematical Ph	=		=		-		
	Physics. It incl	•			•	•	ctions and	
	different transfor			e differe	ential eq	uation.		
Course	To Make the stu							
Objectives		nd Ordinary d		-		•		
Objectives		ries method of					mials	
		Transfor and L ial equation.	apiace	Iransio	rm as a	tool to solve		
	On completion of		tudent	would h	e able t	0.		
Course	CO203C.1 : to se	,						
Outcomes	CO203C.2 : to u				•			
Gutcomes	electrodynamics							
	CO203C.3 : to p	erform Fourier	transfor	m on a g	given da	ta set.		
	CO203C.4: to p				a give	n data set.		
	T	COURSE S						
Unit No.		Content of I	Lach U	nit		Hou	rs of Each	
	Second Order D	ifferential Equ	ations	• [Comm	as Outs	02200	Unit	
	Second Order D : CO203C.1	merennai Equ	iauons	: [Cours	se Outc	omes		
	_	variables-ordin	arv di	fferentia	1 egua	tions		
Separation of variables-ordinary differential equations, singular points, series solutions leading to Legendre, Bessel,							15	
Hermite, Laguerre functions as solutions. Orthogonal								
	properties and recurrence relations of these functions.							
	Special function	s : [Course Ou	tcomes	: CO20	3C.2]			
2							15	
	Spherical harmon			•			13	
	Sturm -Liouville	e systems an	d orth	ogonal	polynoi	nials.		

	Wronskian linear independence and/ linear dependence.				
	Fourier Transforms : [Course Outcomes : CO203C.3]				
	Fourier Transforms: Development of the Fourier integral				
	from the Fourier Series, Fourier and inverse Fourier	4.5			
3	transform, Convolution theorem. Simple Applications: FTIR,				
	Telecommunication systems, Solution of partial differential				
	equation wave equation				
	Laplace Transforms : [Course Outcomes : CO203C.4]				
4	Laplace transforms and their properties, Convolution theorem, Application of Laplace transform in solving linear, differential equations with constant coefficient, with variable coefficient and linear partial differential equation.	15			
TEXT BOOKS					

- 1. Merle C. Potter and Jack Goldberg, Mathematical Methods, S. CHAND (Prentice Hall of India), New Delhi, 2nd Edition, 1987.
- 2. Fredrick W. Byron and Robert W. Fuller, Mathematics of Classical and Quantum Physics, Dover Publications, UK, Vol 1 &2, 1970.
- 3. George Arfken and Hans J Weber, Mathematical Methods for Physicists, Elsevier Academic Press, Cambridge, 7th Edition, 2012.
- 4. L. A. Pipe, Applied Mathematics for Engineers and Physicists, Dover Publication Inc. 2014.
- 5. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, United States, 10th Edition, 2015,
- K.F.Riley, M.P. Hobson, and S.J.Bence, Mathematical methods for Physicists and Engineers, S. CHAND (Cambridge University Press), New Delhi, 3rd Edition, 2018.
- **V Balakrishnan:** Mathematical Physics with Applications, Problems and Solutions; Ane Books, 1st Edition, 2018.

LABORATORY II

Scheme Version:	Name of the subject: Laboratory II	L	Т	P	С	Semester:	Contact Hours per Week: 12	
2021-22		0	0	12	6	II (1 st Year)	Total Hours: 180	
Subject Code: SBS PHY 01 204 CC 00126	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks:	CIE	30 Marks		ation Duration		
		100)	TEE	Marks	Prerequ	iisite of Course	:: None	
Course Description	The aim & objective of the course is to impart the practical training on various electronics devices such as; Op-Amp, Vibrators, Amplifiers, Michelson interferometer etc. Students assigned the general laboratory work will perform at least twelve (12) experiments from the above mentioned. More experiments of similar nature may be added.							
Course Objectives	 To train students for various electronics experiments and take measurements To train students on various optical instruments like Spectrometer, Michelson Interferometer To have hand on experiment for measurement of magnetoresistance and dielectric constant. 							
Course	After completion	n of this cours	e, the stu	dents will	be able t	0		
Outcomes	CO204C.1. Unde	rstand spectr	al lines, g	rating spe	ctra, and	interference fr	inges	
	CO204C.2. Learn	CO204C.2. Learn the characteristics of Op-Amp, vibrators, clipper, clampers, and DA/						

ΑD

CO204C.3. Use excel for plotting graphs

CO204C.4. Understand motion of temperature and magnetic field dependence of Hall coefficient.

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	 Study of Balmer series and Rydberg constant Op-Amp as inverting and non-inverting amplifier Op-Amp as differentiator, Integrator and Adder e/m by Thomson method Single stage RC coupled amplifier Frequency response of common emitter amplifier Bistable/Monostable/Astable vibrators Grating spectra Refractive index of water and oil using prism Magneto resistance Temperature dependence of Hall coefficient Digital to Analog converter, Analog to Digital converter Michelson Interferometer Faraday Effect Clipper and clampers 	150
2	 Root finding of a polynomial equation using numerical methods Solving first and second order differential equation numerical methods Numerical integration Generating finite and infinite series 	30

- 2. **Worsnop and Flint,** Experimental Physics, Little hampton Book Services Ltd, United Kingdom, 9th Edition, 1951.
- 3. **A. C. Melissinos, J. Napolitano,** Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.
- 3. Lab manuals, prepared by faculty of the Department of Physics, 2018.

Latex for Humans

Scheme	Name of the	L	T	P	С	Semester:	Contact
Version:	subject: Latex						Hours
	for Humans						per
2021-22						II (1 st Year)	Week: 2
		1	0	2	2		Total
							Hours:
G 1.1.4	A 12 1.1 4 .	E 1 4'		15	173	:	30
Subject Code: SBS	Applicable to	Evaluation	CI	15 Marks		ination Dura	tion: 2
PHY 01 201	Programs: All Masters/	(Total Marks: 50)	E	IVIAIKS	hours		
GEC 1022	Bachelors	wiarks: 50)	E	35	Droro	quisite: 10+2	with Non
GEC 1022	Program		TE	Marks	Medio		WILLI INOII-
	liogiam		E	Iviaixs	Micuic	ai	
Course	To impart know	wledge to st		about di	fferent	tools used	in writing
Description	scientific/non-sci	· ·			- 1		8
Description							
Course	Write beautifull	y presentable	docun	nents usin	g Latex	ζ.	
Objectives	,				C		
3							
	On completion of					0:	
	CO201G.1 : Write				-		
	CO201G.2 : Write						_
Course	CO201G.3 : Prod						eek.
Outcomes	CO201G.4 : Write						_
	CO201G.5 : Tell	the advantag	es of L	aTeX ove	r other	more tradition	onal
	softwares.	all and use Mil	-T-V				
	CO201G.6: install and use MikTeX. CO201G.7: List LaTeX compatible operating systems.						
	CO201G.7 : List CO201G.8 : Exp	-			y stems.		
	_ 552016.0 . 12Ар	COURSE					
Unit No.		Content of				Hou	rs of Each
							Unit
	[Course Outcome	es : CO201G.	5 , CO	$02\overline{01}\overline{G.6}$,	CO2 0	1G.7,	
1	CO201G.8]						5
	Software installat						
2		tcomes: CO201G.2, CO201G.3]					
		ing basics, LATEX math typesetting					
_	[Course Outcomes : CO201G.2, CO201G.4]					_	
3	Tables and mati	rices, Graphic	s, Pac	kages, Us	ser defi	nable	7
	packages						

4	[Course Outcomes : CO201G.1] Document classes, text bibTEX, beamer, flash cards / CV, Creating your own package, Project.	8
	Text Books	

- 1. **Helmut Kopka & Patrick W. Daly,**Guide to LATEX, Addison-Wesley, New Delhi, 4th Edition 2003.
- 2. **Stefan Kottwitz** , LaTeX Beginner's Guide, Packt Publishing, UK. 1st Edition, 2011
- 3. Resources from websites:

The not so short introduction to LaTeX - Tobi Oetiker

https://tobi.oetiker.ch/lshort/lshort.pdf

Environmental Physics

Scheme Version:	Name of the subject: Environmental Physics	L	Т	P	С	Semester:	Contact Hours per Week: 4	
2021-22		3	1	0	4	II (1 st Year)	Hours: 60	
Subject Code:	Applicable to	Evaluation		30	Examir	nation Duration	n: 3 hours	
SBS PHY 01 202 GEC 3104	Programs: M.Sc. Physics	(Total Marks: 100)	CIE	Marks				
		,		70	Prereq	uisite of Cours	e: 10+2 with	
			TEE	Marks	Science			
Course	This course aims t	o introduce st	udents t	o the appli	ication o	f core physical	concepts of	
Description	the Earth system,	•		•				
	pollution, and c fundamental to ur composition.	•						
Course Objective	environme	stand the bro ental physics c among widely v	an be a	pplied and			•	
	environme	o problem solvi ental change.			-	ractical awarer	ness of global	
Course	On completion of	the course, stu	dent wo	uld be able	: :			
Outcomes	CO202G.1. To	understand t	he conc	epts like e	nergy tr	ansformations	and various	
	CO202G.1. To understand the concepts like energy transformations and various forms of energy, climate change and its effect on living beings							
	CO202G.2. To understand the concepts like thermodynamics and its applications to various energy transformation processes:							
	CO202G.3. To develop an awareness of climate change and its effects							

	CO202G.4. To develop an awareness of different fossil fuels	s and their alternatives						
	COURSE SYLLABUS							
Unit No.	Content of Each Unit	Hours of Each Unit						
1	Introduction to Energy [Course Outcome(s): CO202G.1] Importance of energy in science and society. Types of energy (mechanical, heat, chemical, nuclear, electrical). Law of conservation of energy. Energy transformations. Mechanical energy: force, work, kinetic and potential energy, PE diagrams, conservation of mechanical energy, bound systems. Electricity Basics.	15						
2	Heat Energy and Kinetic Theory [Course Outcome(s): CO202G.2] Heat and Temperature. Internal Energy, Specific Heat. Ideal gas equation. Kinetic theory interpretation of pressure and temperature. Work, heat, and the first law of thermodynamics. Adiabatic lapse rate. Radiant energy. Blackbody radiation. Heat engines and the second law of thermodynamics. The Carnot cycle. Applications of the second law to various energy transformation processes: heat pumps and refrigerators; different engine cycles. Entropy and disorder.	15						
3	Energy and Climate Change [Course Outcome(s): CO202G.3] Energy balance of the Earth. Greenhouse effect. Climate feedbacks (water, clouds, ice albedo). Global Climate Models. Evidence for climate change. Paleo-climate. Climate change impacts. Climate change mitigation. Target CO ₂ levels.	15						
4	Energy Source [Course Outcome(s): CO202G.4] Chemical energy. Energy in biology, photosynthesis, respiration. Energy use in the human body, energy content of food. Fossil fuels and their origin (coal, oil, natural gas). Problems with fossil fuels, greenhouse pollution, peak oil. Alternatives to fossil fuels. Alternative energy resource: Wind energy, energy from water on land, ocean energy. Biomass and other sources.							

- **1. Sol Wieder**, An Introduction of Solar Energy for scientists and Engineers, John Wiley, United States, 1st Edition, 1982.
- 2. J.T. Widell and J. Weir, Renewable Energy Resources, Elbs, 1st Edition, 1988.
- **3. R.N. Keshavamurthy** and **M. Shankar Rao**, The Physics of Monsoons, Allied Publishers, New Delhi, 1st Edition, 1992.

- 4. Landau & Lifshitz, Fluid Mechanics, Pergamon Press, UK, 2nd Edition, 2000.
- **5. Egbert Boeker** & **Rienk Van Groundelle**, Environmental Physics, John Wiley, United States, 2nd Edition, 2000.
- **6. J.T. Hougtyion**, The Physics of Atmosphere, Cambridge University Press, 3rd Edition, 2002.
- **7. C. W. Rose**, An Introduction to the Environmental Physics of Soil, Water and Watersheds, Cambridge University Press, 1st Edition, 2004.
- **8. R. A. Hinrichs** and **M. Kleinbach**, Energy, Its Use and the Environment, Brooks Cole, Stanford University Press, 4th Edition, 2005.
- **9. P. Hughes**, **N. J. Mason**, Introduction to Environmental Physics: Planet Earth, Life and Climate, Taylor & Francis, France, 1st Edition, 2005.
- **10. J. Monteith** and **M. Unsworth**, Principles of Environmental Physics: Plants, Animals and the Atmosphere, Elsevier, 4th Edition, Europe, 2013.
- 11. K.L. Kumar, Engineering Fluid Mechanics, S. Chand, New Delhi, 4th Edition, 2016.

Computational Physics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Computational						Week: 4
2021-22	Physics						Total
2021 22		3	1	0	4	II (1 st Year)	Hours: 60
Subject Code:	Applicable to	Evaluation		30	Examir	nation Duration	1: 3 hours
SBS PHY 01	Programs: M.Sc.			Marks			
201 DCEC	Physics	(Total Marks: 100)	CIE				
3104		,		70	Prerequisite of Course: None		
			TEE	Marks			
Course	The objective of	the course is t	o train t	he student	ts for va	rious computa	ational
Description	techniques to solution techniques	-	, differe	ntiation a	nd mole	cular dynamic	es
Course	To train st	udents for com	puter pi	ogrammin	g		
Objective	To make s	tudents familia	r with si	mulation te	echnique	es	
	• To train	students for	executir	ng many b	oody pr	oblems related	d computer
	programs						
Course	On completion of	the course, stu	dent wo	uld be able	:		
Outcomes	• computat	ions technique	es to sol	ve various	differe	ntial equations	3
	-	utational integ		, 5 , 411041		iiiiii oqualioni	_
	 the molecular simulations and optimization techniques. 						
	COURSE SYLLABUS						

Unit No.	Content of Each Unit	Hours of Each Unit
1	Stochastic Processes: Theory of random walks and simulation of random walks in one, two and three dimensions. Elementary ideas and simulations of self-avoiding walks, additive and multiplicative stochastic processes, Brownian motion and fractional Brownian motion.	15
2	Numerical Integration and Stochastic Differential Equations: Dynamical equations, Finite Difference Method, Langevin dynamics, TDGL equation, Cahn-Hilliard equation, Burgers' equation, KPZ model, Traffic Flow Dynamics.	15
3	Molecular Dynamics (MD) and Monte Carlo (MC) Simulations: Elementary ideas of molecular dynamics simulation, Physical potentials, Verlet algorithm. Time average and Ensemble average, Monte Carlo methods, Metropolis algorithm. Application of Monte-carlo simulations: (a) Ising model in magnetism (b) Glauber and Kawasaki dynamics.	15
4	Classification of problems; examples of optimization problems: traveling salesman problem (TSP) and satisfiability (k-SAT) problem; heuristic methods of solutions and simulated annealing technique. Computational experiments using computer programming 1. Finite and infinite series 2. Root finding: (bisection, Secant and Newton-Raphson methods), 3. Solving first and second order ordinary differential equations including simultaneous, equations (Euler and Runge-Kutta methods) 4. Numerical integration (trapezoidal, Simpson, Gauss quadrature, methods) 5. Matrices (arrays of variable sizes, addition, multiplication, eigenvalues, eigenvectors, inversion, solutions of simultaneous equations) 6. To determine Wien's constant using bisection method and	15

false position method.

- 7. To solve Kepler's equation by Newton-Raphson method.
- 8. To solve van der Waals gas equation for volume of a real gas by the method of successive approximation.
- 9. To interpolate a real data set from an experiment using the Lagrange's method, and Newton's method of forward differences and cubic splines.
- 10. To fit the Einstein's photoelectric equation to a realistic data set and hence calculate Planck's constant. To estimate the value of π by rectangular method, Simpson rule and Gauss quadrature by numerically evaluating suitable integral.
- 11. To find the area of a unit circle by Monte Carlo integration.
- 12. To simulate Buffen's needle experiment.
- 13. To simulate the random walk.
- 14. To study the motion of an artificial satellite by solving Newton's equation for its orbit using Euler method.
- 15. To study the growth and decay of current in RL circuit containing (a) DC source and (b) AC using Runge Kutta method, and to draw graphs between current and time in each case.
- 16. To study the motion of two coupled harmonic oscillators.

- **1. V. Rajaraman,** Computer Oriented Numerical Methods, Prentice Hall of India, 3rd Edition, 1993.
- **2. V. Rajaraman,** Computer Programming in FORTRAN 90/95, Prentice Hall of India, 1st Edition,1997.
- **3. D. Frenkel & B. Smit,** Understanding Molecular Simulation, Academic Press, 2nd Edition, 2001.
- 4. **M. Plischke & B. Bergersen,** Equilibrium Statistical Physics, World Scientific, 3rd Edition, 2006.
- 1. **W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,** Numerical Recipes in C/C++: The Art of Scientific Computing, Cambridge University Press, 3rd Edition, 2007.
- 2. M. P. Allen, Computer Simulation of Liquids, Oxford University Press, 2nd Edition, 2017.
- 3. **Kurt Binder and Heerman,** Monte Carlo Simulation in Statistical Physics, Springer, 6th Edition, 2019.

QUANTUM MECHANICS - II

Scheme Version:	Name of the subject: Quantum	L	Т	Р	С	Semester:	Contact Hours per Week: 4	
2021-22	Mechanics – II	3	1	0	4	II (1 st Year)	Total Hours: 60	
Subject Code:	Applicable	Evaluatio		30	Examir	ı nation Duration	n: 3 hours	
SBS PHY 01 202	to Programs:	n	CIE	Marks				
DCEC 3104	M.Sc. Physics	(Total Marks: 100)	TEE	70 Marks	Prerequisite of Course: Quantum Mechanics-I			
Course		_			dvanced topics such as symmetries,			
Description	identical partic							
	which has broad and rich applicability in condensed matter physics, atomic and molecular physics, nuclear physics, space science, and chemistry.							
Course Objectives	syn tim	nmetries and o	conservation erturbation t	laws, fermi heories, var	I topics of quantum mechanics such as ions and bosons, time independent and riational and WKB methods, scattering bry			
	• To	aware the stu	dents about	applications	s of adva	nced phenomen	a of quantum	

	mechanics in physical, mathematical and chemical sciences						
	mechanics in physical, maniematical and chemical sciences	•					
	After completetion of this course, students will be able to						
	CO202D.1. understand the concepts of symmetries, conservation laws, bosons and fermions in quantum mechanics						
	CO202D.2. apply symmetries and conservation laws in various of problems	uantum mechanical					
Course Outcomes	CO202D.3. illustatre the time independent and time depe theories, variational and WKB methods	ndent perturbation the					
	CO202D.4. describe the fine structure and Zeeman effect phenon	nena					
	CO202D.5. explain the basics of scattering theory						
	CO202D.6. apply the delta function's properties in various q problems	uantum mechanical					
	CO202D.7. understand the basics of relativistic quantum mechan	ics					
	CO202D.8. recognize the importance and applications of relativistic quantum mechanics						
	COURSE SYLLABUS						
	6. 4. 4. 5. 5. 4. 1. 7.	u					
Unit No.	Content of Each Unit	Hours of Each Unit					
	Symmetries, Conservation Laws & Identical Particles [Course						
	Outcome(s): CO202D.1 & CO202D.2]						
	Transformation in space, The Translation Operator, Translation						
1	Symmetry, Conservation Laws, Parity: Parity in One & Three	15					
	Dimensions; Parity Selection Rules, Rotational Symmetry,						
	Degeneracy, Rotational Selection Rules, Many Particle Systems,						
	Systems of Identical Particles, The Helium Atom, The Pauli Exclusion Principle.						
2	Approximation Methods [Course Outcome(s): CO202D.3 &	15					
i		I					

	CO202D.4]	
	Time Independent Perturbation Theory: Nondegenerate Perturbation Theory; Degenerate Perturbation Theory; Fine Structure; The Zeeman Effect, The Variational Method, The WKB method, Time Dependent Perturbation Theory, Adiabatic & Sudden Approximations.	
	Scattering Theory & The Delta Function [Course Outcome(s): CO202D.5 & CO202D.6]	
3	Differential cross-section, scattering of a wave packet, integral equation for the scattering amplitude, Born approximation, method of partial waves, low energy scattering and bound states, resonance scattering, The Delta Function: One Dimensional Delta Function and Three Dimensional Delta Function.	15
	Relativistic Quantum Mechanics [Course Outcome(s): CO202D.7 & CO202D.8]	
4	Klein-Gordon equation, Dirac equation, Probability and Current Density, Plane Wave Solutions, Symmetries of the Dirac equation, Dirac's Equation for a Central Potential, Covariance of Dirac's Equation, Relativistic Hydrogen Atom Problem, The Hole Theory and Positrons.	15

- 1. **L. D. Landau and E.M. Lifshitz**, Quantum Mechanics, Butterworth Heinemann, The Netherlands, 3rd Edition, 1981.
- 2. **P. A. M. Dirac**, The Principles of Quantum Mechanics, Oxford University Press, UK, 4th Edition, 1988.
- 3. **R. Shankar**, Principles of Quantum Mechanics, Springer, Germany, 2nd Edition, 1994.
- 4. **N. Zettili**, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2nd Edition, 2009.
- 5. **J. J. Sakurai**, Modern Quantum Mechanics, Pearson, India, 2nd Edition, 2013.
- 6. **L. I. Schiff**, Quantum Mechanics, McGraw Hill Education, USA, 4th Edition, 2017.
- 7. **D. J. Griffiths**, Introduction to Quantum Mechanics, Cambridge University Press, UK, 3rd Edition, 2018.
- 8. **C. Cohen-Tannoudji, B. Diu, and F. Laloe**, Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, USA, 2nd Edition, 2019.

Analog Electronics

Scheme Version:	Name of the subject: Analog	L	Т	P	С	Semester:	Contact Hours per Week: 4	
2021-22	Electronics	3	1	0	4	II (1 st Year)	Total Hours: 60	
Subject Code:	Applicable to	Evaluation		30	Examir	nation Duration	1: 3 hours	
SBS PHY 01 203 DCEC	Programs: M.Sc. Physics	(Total Marks:	CIE	Marks				
3104		100)	TEE	70 Marks	Prereq	uisite of Courso	e: None	
Course	This course covers	the design, co	onstructio	on, and ope	eration c	of analog electr	onic circuits.	
Description	The main contents are: the basic principles of operation, terminal characteristics, and equivalent circuit models for diodes, transistors, and op-amps. Frequency response of cascaded amplifiers and gain-bandwidth considerations. Concepts of feedback, stability							

	and frequency compensation.
Course Objective	 To introduce students to entire circuit designs To provide in-depth theoretical base of Digital Electronics
Course Outcomes	On completion of the course, student would be able: CO203D.1. To understand the techniques to shape of signals. CO203D.2 To understand the principle of multivibrators CO203D.3 To understand basic properties of analog systems CO203D.4 To understand the fundamental designing concepts of different types of
	Logic Gates, Minimization techniques etc.

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Linear Wave Shaping [Course Outcome(s): CO203D.1] High Pass RC circuits: Its response to step, Pulse, Square wave, Ramp, exponential waveforms, Low pass RC Circuit: Its response to step, pulse, Square wave, Ramp, Exponential wave forms, Its application as an integrator. Attenuators, Time base Signal in a CRO. Operation of Clamping Circuits, Clamping Circuit theorem, Practical Clamping Circuit theorem, Operation of Transistor as a switch. Clipping and Switching Circuits: Diode Clippers, Combinational and Biased clippers Transistor Clippers, Comparators, Applications of Voltage Comparators.	15
2	Multivibrators [Course Outcome(s): CO203D.2] A bistable multivibrator-basic concepts of its operation. Symmetrical and Unsymmetrical triggering, Application (brief). Monostable Multivibrator, Basic concepts of its operation, quantitative discussion of Quasi stable state, Application, Astable multivibrator - basic concepts of operation. Quantitative discussion of the period of oscillation, Application.	15
3	Analog Systems [Course Outcome(s): CO203D.3]	15

	Operational Amplifier, Differential Amplifier, Transfer Characteristics, Frequency Characteristics, IC Operational Amplifier, Compensation in Operational Amplifiers, Application of OP-AMP as adder, Multiplier, Differentiator, Integrator, Log and Antilog Amplifier, Application of Operational Amplifier to analogue computation. Logic Systems [Course Outcome(s): CO203D.4]	
4	Basic Concepts of dc positive and negative logic systems, Dynamic logic systems, OR gate and AND gate, NOT gate, NAND gate, EXOR gate, NOR gate & their applications, Response to input pulse operation. TTL (transistor transistor logic) and DTL (diode transistor logic) logics Binary Adders, Half adders and full adders, Multiplexing and demultiplexing.	15
	TEVT DOOKS	

- 12. **P. Horowitz and W. Hill,** The Art of Electronics, Cambridge University Press, 2nd Edition, 1989.
- 13. **J.J. Cathey,** Schaum's Outline of Electronic Devices and Circuits, McGraw Hill Education, New York, 2nd Edition, 2002.
- 14. **R.L. Boylestad and L. Nashelsky**, Electronics Devices and Circuit Theory, Prentice Hall of India, New Delhi, 8th Edition 2003.
- 15. **A.P. Malvino**, Electronic Principles, Tata McGraw, New Delhi, 7th Edition, 2009.
- 16. **J.H. Moore, C.C. Davis and M.A. Coplan**, Building Scientific Apparatus, Cambridge University Press, 4th Edition 2009.
- 17. W. Kleitz, Digital Electronics, A Practical Approach, Pearson, UK, 9th Edition 2011.
- 18. **R. J. Tocci**, Digital Systems-Principles and Applications, Prentice Hall of India, New Delhi, 10th Edition 2013.
- 19. Millman and Halkias, Integrated Electronics, McGraw Hill, New York, 2nd Edition, 2017.

Introduction to Astronomy and Astrophysics

Scheme Version:	Name of the	L	T	P	С	Semester:	Contact Hours
version:	subject: Introduction						per
2021-22	to Astronomy					II (1 st Year)	Week: 4
	and Astrophysics	3	1	0	4		Total Hours: 60
Subject	Applicable to	Evaluation		30	Exam	ination Dura	tion: 3
Code: SBS	Programs:	(Total	CIE	Ma	hours		
PHY 01 204	M.Sc. Physics	Marks: 100)		rks			
DCEC 3104				70		quisite: Gene	ral
			TEE	Ma	Math	ematics	
Constant	To mol 41		oloovet 1	rks	4 41	1 1 1	
Course	To make the st						oservational
Description	technique adopte	d in understandii	ng astrop	ohysics	and ast	ronomy	
Course Objectives	The objective of this course is to make the students • Understand coordinate systems in Astronomy • Understand the Sun • Understand Binary stars. • Understand stellar distances						
Course	On completion of	of the course, stu	udent w	ould b	e able t	0:	
Outcomes	CO204D.1 : diffe				•	stems	
Outcomes	CO204D.2 : kno						
	CO204D.3: Know about Binary stars and their motions CO204D.4: Know about stellar distances and other properties						
	CO204D.4 : Kno				otner j	properties	
Unit No.		COURSE S' Content of E				Цоп	rs of Each
Omt 140.		Content of E	acii VIII	L		1100	
	Unit Observational Data: [Course Outcomes : CO204D.1]						
	Astronomical Coordinates- Celestial Sphere, Horizon, Equatorial, Ecliptic and galactic system of coordinates, Conversion from one coordinate system to another. Aspects						
of sky from different places on the earth. Twilight, Season					-		
1	Sidereal. Appare	*			_	· ·	15
	Calendar. Julia		helioc			ction.	
	Determination of						
	distance of a star		-		_		
	relation.						

2	Stellar Distances and Magnitudes: [Course Outcomes: CO204D.4] Distances of stars from the trigonometric, secular and moving cluster parallaxes. Stellar motions. Magnitude scale and magnitude systems. Atmospheric extinction. Absolute magnitudes and distance modulus. Colour index. Black-body approximation to the continuous radiation and temperatures of stars. Variable stars as distance indicators.	15
3	Binaries and Variable Stars: [Course Outcomes: CO204D.2] Visual, spectroscopic and eclipsing binaries. Importance of binary stars as source of basic astrophysical data. Classification and properties of various types of intrinsic and eruptive variable stars. Astrophysical importance of the study of variable stars. Novae and Supernovae.	15
4	Sun: [Course Outcomes: CO204D.3] Physical Characteristic of Sun – Basic data, solar rotation, solar magnetic fields, Photosphere- granulation, sun-spots, Babcock model of sunspot formation, solar atmosphere-chromospheres and corona, Solar activity – flares, prominences, Solar wind, activity cycle, Helioseismology	15
	TEXT BOOKS	

1. **W.M.Smart**: Text book of Spherical Astronomy, Cambridge University Press; 6th edition, 1977

^{2.} **M. Zeilik,** Astronomy, The evolving Universe, Cambridge University Press , 1^{st} Edition, 2002.

^{3.} **P.V. Foukal,** Solar Astrophysics , Wiley-VCH, United States, 1st Edition, 2004.

^{4.} **I. Morrison,** Introduction to Astronomy and Cosmology, Wiley, United States, $1^{\rm st}$ Edition, 2008

SOLAR ENERGY AND PHYSICS OF PHOTOVOLTAICS

Scheme Version:	Name of the Subject:	L	T	Р	С	Semester:	Contact hours per	
2021-2022	Solar Energy and Physics of Photovoltaics	3	1	0	4	II (1 st Year)	week: 4 Total Hours: 60	
Subject Code: SBS PHY 01 205	Applicable to Programs:		CIE	30 Marks	_	Examination Duration: 3 hours		
DCEC 3104	M.Sc. Physics	Evaluation (Total Marks): 100	TEE	70 Marks	Pre-requisite of course: There is no prerequisite or co-requisite for this course. But students are expected to know basic semiconductor physics.			
Course Description	The course is intended for students who have interest in alternate energy sources as a contributor to sustainability. It provides a comprehensive treatise on the science and technology of solar energy, its collection and the design principles that need to be understood for its effective use in a variety of installations and uses.							
Course Objectives	 The Course will be introducing the students to all the aspects of PV technology. To develop basic understanding related to fabrication ad characterization of different types of solar cells. To know state of art in the field of solar cells materials and solar cells. 							
Course Outcomes:	On completion of this course, student will learn: CO204.1 The available solar energy and the current solar energy conversion and utilization processes, solar spectrum. CO204.2 The factors that influence the use of solar radiation as an energy source. CO204.3 The various active and passive technologies that are available for collecting solar energy; have the ability to apply design principles to selection of an appropriate solar energy installation to meet requirements.							

CO204.4 How solar cells convert light into electricity, how solar cells are manufactured, how solar cells are evaluated.

CO204.5 What technologies are currently on the market, and how to evaluate the risk and potential of existing and emerging solar cell technologies.

CO204.6 To examine the potential & drawbacks of currently manufactured technologies, as well as pre-commercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdles-technological and economic, towards widespread adoption.

	COURSE SYLLABUS	COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit						
1.	Solar Radiation: [Course Outcome (s): CO204.1 & CO204.2] origin, solar constant, spectral distribution of solar radiation, absorption of solar radiation in the atmosphere, global and diffused radiation, seasonal and daily variation of solar radiation, measurement of solar radiation, sun tracking systems, photo thermal conversion, solar energy collectors, collector efficiency and its dependence on various parameters.	15						
2.	Solar energy: [Course Outcome (s): CO204.3] storage of solar energy, solar pond, solar water heater, solar distillation, solar cooker, solar green houses, solar dryers, absorption air conditioning. solar fuels: electrolysis of water, photoelectrochemical splitting of water.	15						
3.	Fundamentals of solar cells: [Course Outcome (s): CO204.4 & CO204.5] Photo voltaic effect, semiconductor properties, energy levels, basic equations, p-n junction its characteristics, fabrication steps, thermal equilibrium condition, depletion capacitance, junction breakdown, heterojunction. Silicon based solar cells: single crystal, polycrystalline and amorphous silicon solar cells.	15						

4. Device physics: [Course Outcome (s): CO204.6]

15

Solar cell device structures, construction, output power, efficiency, fill factor and optimization for maximum power, surface structures for maximum light absorption, current voltage characteristics in dark and light, operating temperature vs conversion efficiency, charge carrier generation, recombination and other losses. Cadmium telluride solar cells, copper indium gallium selenide solar cells, organic solar cells, perovskite solar cells, Advanced concepts in photovoltaic research.

REFERENCE BOOKS

- 9. S P Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 1996.
- 10. Solid State Electronic Devices, Ben. G. Streetman, S. K. Banerjee, PHI Leaning Pvt. Ltd, 2000.
- **11.** D. Yogi Goswami, <u>Frank Kreith</u>, <u>Jan F. Kreider</u>, Principles of Solar Engineering, Taylor and Francis, 2000.
- 12. Jasprit Singh, Semiconductor Devices, Basic Principles, Wiley, 2001
- 13. Stephen J. Fonash, Solar Cell Device Physics, 2nd edition, Academic Press, 2003.
- 14. H P Garg, J Prakash, Solar energy fundamentals and applications, Tata McGraw Hill publishing Co. Ltd, 2006.

Accelerator Physics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	subject:						Hours per	
	Accelerator						Week: 4	
2021-22	Physics						Total	
2021-22		3	1	0	4	II (1 st Year)	Hours: 60	
Subject Code:	Applicable to	Evaluation		30	Examir	nation Duration	1:3 hours	
SBS PHY 01 206 DCEC	Programs: M.Sc. Physics	(Total	CIE	Marks				
3104	,	Marks: 100)		70	Prereq	uisite of Course	e: Nuclear	
			TEE	Marks	Physics, Electrodynamics, Quantum mechanics			
Course Description	This course is intended to expose the students to theoretical design and usage of various particle accelerators.							
Course Objectives	 To understand the beam optics. Get knowledge about different types of accelerators To understand the main features of superconducting cyclotron, linear accelerators and high energy accelerators. 							
	After completetion	of this course,	studen	ts would b	e able to	:		
	CO206D.1. Unde	erstand the bea	m opti	cs & bean	n transpo	ort system.		
Course Outcomes	CO206D.2. About videtails of electrost			nniques to	accelera	te particles and	l technical	
	CO206D.3. Get kno	owledge about I	atest a	ccelerator t	technolo	gy based on Rf	cavities.	
	CO206D.4. About 9	Synchrotron Rad	diations	& product	ion of ra	dioactive ion be	eams.	

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Charged Particle Dynamics: [Course Outcome(s): CO206D.1] Particle motion in electric and magnetic fields, Beam transport system, Beam pulsing and bunching techniques, microbeams, Particle and ion sources, secondary beams, Measurement of beam parameters.	15
2	Electrostatic and Heavy Ion Accelerators: [Course Outcome(s): CO206D.2] Van de Graaff voltage generator, Cockcroft-Walton voltage generator, insulating column, voltage measurement, Acceleration of heavy ions, Tandem electrostatic accelerator, Production of heavy negative ions, Pelletron and Tandetron, Cluster beams.	15
3	Radiofrequency Accelerators: [Course Outcome(s): CO206D.3] Linear accelerators - Resonance acceleration and phase stability, electron and proton Linacs, Superconducting Heavy Ion Linear Accelerators. Circular accelerators- Cyclotron, Frequency Modulated Synchrocyclotron, AVF Cyclotron, Alternating-gradient accelerators.	15
4	Synchrotron Radiation Sources: [Course Outcome(s): CO206D.4] Electromagnetic radiation from relativistic electron beams, Electron synchrotron, Characteristics of synchrotron radiation. Production of Radioactive ion beams, Polarized beams, Proton synchrotron, Colliding accelerators.	15

- 1. M.S. Livingston and J.P. Blewel, Particle Accelerators, McGraw-Hill Book Press, 1962.
- 2. **Ed. J. Cerny**, Nuclear Spectroscopy and Reactions Part-A, Academic Press, 1974.
- 3. **H.J. Wiedman**, Particle Accelerator Physics, Vol I and II, Springer Verlag, 1998.
- 4. **S. Y. Lee**, Accelerator Physics, World Scientific, Singapore, 2004

Radiation Physics

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact Hours per Week: 4	
2021-22	Physics	3	1	0	4	II (1 st Year)	Total Hours: 60	
Subject Code: SBS PHY 01 207 DCEC	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks: 100)	CIE	30 Marks	Examir	nination Duration:3 hours		
3104	· • • • • • • • • • • • • • • • • • • •		TEE	70 Marks	Physics	uisite of Course s, Electrodynam um mechanics		
Course Description	To impart knowledge in depth about nuclear radiation, its detection, nuclear spectrometry and related aspects							
Course Objectives	 To aware the students about the various type of nuclear radiations and their interaction with matter To learn various techniques for detection of radiations To study the nuclear spectrometry 							
Course Outcomes	CO207D.1. Under spectrometry. CO207D.2. Know	rstand nuclear	radiat	ion and	its dete	·	ire, nuclear	

CO207D.3. Know how to solve problems related to safety aspect of nuclear radiation CO207D.4 Understand the nuclear spectroscopy and basics of nuclear medicine.

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Interaction of Nuclear Radiations: [Course Outcome(s): CO207D.1] Origin and energy spectra, Brief discussion of interactions of gamma rays, Electron and heavy charged particles with matter, Different types of neutron sources, Interaction of neutron with matter, Neutron detectors.	15
2	Nuclear Radiation Detector: [Course Outcome(s): CO207D.2] Gas filled detectors; Ionization chamber, Proportional counter and GM counter, Scintillation detector, semiconductor detector for X-rays, gamma rays and charged particle detection, Radiation exposure, Biological effects of radiation, radiation monitoring	15
3	Nuclear Spectrometry and Applications[Course Outcome(s):CO207D.3] Analysis of nuclear spectrometric data, measurement of nuclear energy levels, spins, parities, moments, internal conversion coefficients, Angular correlation, Perturbed angular correlation, measurement of g-factor and hyperfine fields.	15
4	Mossbauer Effect: [Course Outcome(s): CO207D.4] Positron annihilation, particle and photon induced x-ray emission, Elemental concentration analysis by charged particles and neutron activation analysis, Diagnostic nuclear medicine, Therapeutic nuclear medicine.	15

- 1. Knoll G. F., Radiation Detection and Measurement, John Wiley & Sons, 1989.
- 2. Singuru R. M., Introduction to experimental nuclear physics, Wiley Eastern Publications, 1987.
- 3. Muraleedhara V. Nuclear radiation Detection, measurement and Analysis, Narosa Publishing House, 2009.

Atomic, Molecular Physics and Lasers

Scheme Version:	Name of the subject:	L	T	P	С	Semeste	er: Contact Hours		
, 62,5252	Atomic,						per		
2021-22	Molecular					III	Week: 4		
	Physics and					(2 nd Yea	r) Total		
	Lasers	3	1	0	4		Hours:		
				20			60		
Subject	Applicable to	Evalu	CHE	30		ination D	Ouration: 3		
Code: SBS	Programs:	ation	CIE	Marks	hours	• • • •	<i>T</i> (1) (1) 1		
PHY 01 301	M.Sc. Physics	(Total	(DIA)	70		_	Mathematical		
CC 3104		Mark	TEE	Marks		ods in Ph			
		s: 100)			_	tum Mec tical Mec	*		
Course	Aim of the cour		aware stud	ents about					
Description	spectra and to un					is atomic	and molecular		
Description	spectra and to un	uerstand	the working	UI LASEI	15.				
Course	The stude	ents will b	e exposed t	0					
Objectives	. Rotation	n and Vib	ration spect	roscopy					
			d Raman sp		of mol	ecules.			
		. Working of Lasers							
	On completion of	f the cour	se, student	would be a	ble to:				
	CO301C.1 : Und	derstand o	different mo	dels of an a	Atom				
Course	CO301C.2 : deri	ve the en	ergy distribı	ition corre	spondir	ng to diffe	erent levels of		
Outcomes	an atom								
	CO301C.3 : Uno		-		nd Und	erstand R	laman Effect		
	and Raman spectroscopy of molecules. CO301C.4: understand the working of He-Ne Laser and Ruby Laser.								
	CO301C.4: und	erstand tl	ne working o	of He-Ne I	Laser an	a Ruby L	aser.		
** ** **	T		RSE SYLL						
Unit No.		Conte	nt of Each	Unit			Hours of Each		
	A40	T. [C	as Out-		1011		Unit		
	Atomic Spectra Review of Atom	_			_	Pohr's			
	model, Sommer				-				
	electron spin. F		*						
1	principle, electro						15		
	energy levels of								
	electric field – fin								

2	Atomic Spectra II: [Course Outcomes: CO301C.2] Spin-orbit interaction and fine structure, LS and JJ coupling, Relativistic correction to spectra of hydrogen atom, Lamb shift, effect of magnetic field on the hydrogen atom spectra, Zeeman and Paschen-Back effect. Hyperfine structure and isotope shift, Auger Effect and Frank Condon Principle. Born-Oppenheimer approximation.	15
3	Molecular spectra: [Course Outcomes: CO301C.3] Rotational levels in diatomic and polyatomic molecules, vibrational levels in diatomic and polyatomic molecules, diatomic vibrating rotator, Born-Oppenheimer approximation, Vi vibrational levels, experimental aspects of vibrational and rotational spectroscopy of molecules, polarization of light and Raman effect, Raman Spectroscopy (Brief Introduction).	15
4	Lasers: [Course Outcomes: CO301C.4] Spontaneous and stimulated emission, Spatial and temporal Coherence, Einstein A and B coefficients, Optical Pumping, Population Inversion, Modes of resonator, Q-switching and Mode Locking, Ultra short pulse generation, He-Ne Laser and Ruby Laser- Principle, Construction and working, Application of lasers in the field of medicine and Industry.	15
	Text Books	

- 1. H. E. White, Introduction to Atomic Spectra, McGraw Hill, New York, 1st Edition, 1934.
- 2. H. G. Kuhn, Introduction to Atomic Spectra, Green and Co., Harlow, 2nd Edition, 1969.
- **3. K. Thyagarajan and A.K. Ghatak,** Lasers Theory and Applications, Plenum Press, New York, 1st Edition, 1981.
- **4. B. H.Bransden and C. J Joachain,** Physics of Atoms and Molecules, Pearson, UK, 2nd Edition, 2003.
- **5. R. Eisberg and R. Resnick,** Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Wiley, United States, 2nd Edition, 2006.
- **6. Arthur Beiser,** Perspectives of Modern Physics, McGraw Hill, New York, 6th Edition, 2006.
- **7. C. N. Banwell,** Fundamentals of Molecular Spectroscopy, McGraw Hill, New York, 4th Edition, 2017.

NULEAR PHYSICS

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact Hours per		
	Nuclear and						Week: 4		
2021-22	Particle Physics	3	1	0	4	III (2 nd Year)	Total Hours: 60		
Subject Code: SBS PHY 01 302	Applicable to Programs:	Evaluation		30 Marks	Examina	camination Duration: 3 hours			
CC 3104	M.Sc. Physics	(Total Marks:	CIE						
		100)		70	-	isite of Course			
			TEE	Marks		natical Physics a m Mechanics	and		
					Quantu	iii ivieciiaiiics			
Course Description	This course will properties of nu also learn about	ıclei, radioacti	ive decay	s, nuclear			-		
	Student	s will be exp	osed to						
Course		General prop	erties of	nuclei					
Objectives		Interactions a			ns				
			_			the nuclear str	ructure		
	•]	Elementary c	classifica	tion of pa	rticles a	nd their proper	rties		
	After completeti					e to			
Course	CO302C.1. Unde	•				moson than	ry and chin		
Course Outcomes	dependence of r		ractions	between	nucleons	s, meson theo	ry and spin		
	CO302C.3. Get		oout Nuc	lear mod	els, Magi	c numbers, an	d Collective		
	nuclear model. E	_							
	CO302C.4. Clas	sify the partic	les and w	ill be able	to under	stand their pro	perties.		

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Introductory Concept of Nuclei: [Course outcomes:CO302C.1] Scattering and electromagnetic methods for determining the nuclear radius, Nuclear angular momentum, Nuclear magnetic dipole moment and Electric quadruple moment, Parity quantum number, Statistics of nuclear particles, Nuclear Disintegration: Simple theories of decay, Properties of neutrino, Non conservation of parity and Wu's experiment in beta decay, Electron capture, Internal conversion.	15
2	Inter Nucleon Forces: [Course outcomes: CO302C.2] Properties and simple theory of the deuteron ground state, Spin dependence and tensor component of nuclear forces, Nucleon-nucleon scattering at low energy, Charge-independence of nuclear forces, Many—nucleon systems and saturation of nuclear forces, Exchange forces, Elements of meson theory.	15
3	Nuclear Structure and Models: [Course outcomes: CO302C.3] Fermi gas model, Experimental evidence for shell structure in nuclei, Basic assumption for shell model, Single- particle energy levels in central potential, Spin-orbit potential and prediction of magic numbers, Extreme single- particle model, Prediction of angular moment, Parities and magnetic moment of nuclear ground states, Liquid drop model, Semi-empirical mass formula, Nuclear fission, The unified model.	15
4	Particle Physics: [Course outcomes: CO302C.4] Properties and origin, Elementary particles, Properties, classification, type of interactions and conservation laws, Properties of mesons, Resonance particles, Strange particles and Strangeness quantum number, Simple ideas of group theory, Symmetry and conservation laws, CP and CPT invariance, Special symmetry groups SU (2) and SU (3) classification of hadrons, Quarks, Gell-Mann-Okubu mass formula.	15

- 1. Roy & Nigam, Nuclear Physics, John Wiley & Sons, USA, 1st Edition, 1967.
- **2.** H. Enge, Introduction to nuclear Physics, Addison Wesley, USA, 1st Edition 1969.
- **3.** J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, Springer, Germany, 1st Edition, 1969.
- **4. M.Leon,** Particle Physics: An introduction, Elsevier, Netherlands, 1st Edition, 1973.
- **5. S. N. Ghoshal**, Nuclear Physics, S. Chand, India, 1st Edition, 1994.
- 6. F.I. Stancu, Group Theory in Subnuclear Physics, Clarendon Press, UK, 1st Edition, 1997.
- **7. J.D. Walecka,**Theoretical Nuclear and Subnuclear Physics, World Scientific, Singapore, 2nd Edition, 2004.
- 8. B. R. Martin and G. Shaw, Particle Physics, John Wiley & Sons, USA, 3rd Edition, 2008.

SOLID STATE PHYSICS

Scheme Version:	Name of the subject: Solid	L	Т	Р	С	Semester:	Contact Hours per
version.	State Physics						Week: 4
2021-22		3	1	0	4	III (2 nd Year)	Total Hours: 60
Subject Code:	Applicable	Evaluatio	CIE	30	Examir	nation Duration	n: 3 hours
SBS PHY 01	to Programs:	n		Marks			
303 CC 3104	M.Sc. Physics	(Total	TEE	70	P	rerequisite of C	Course:
	,	Marks:		Marks		duation Level S	
		100)			Physics and Quantum Mechanics		
Course	The solid state	physics is t	the branch o	f physics c	dealing v	vith physical p	roperties of
Description	solids particula		_				
	course solid so		•	_			_
	crystal bonding			•		•	-
Course Objectives	 To understand the fundamentals of intriguing phenomena such as direct lattice, reciprocal lattice, lattice vibration in solids, specific heat of metals, band formation in solids, effective mass, and superconductivity. To develop the scientific and positive attitudes in students related to the materials 						
	 science which is a part of solid state physics To able the students for solve the problems related to solid state physics 						
Course Outcomes	At the end of th	nis course, th	e students wi	ll be able t	0		

CO202C 1 identify various crystal structures and their symmetries	1 11 d .						
CO303C.1. identify various crystal structures and their symmetries in solids							
CO303C.2. determine the crystal structure through X-ray diffract	ion, rotating crystal,						
and	Laue						
metnoas							
CO303C.3. explain the theories and phenomena of lattice dynam and	ics, various bonding,						
thermal properties (specifically specific heat) in solids							
CO303C.4. calculate the specific heat and density of states of vario	us solids						
	, mean free path, time,						
	•						
CO303C.6. recognize the importance of effective mass, nearly free-electron model and							
binding approximation							
CO303C.7. identify the basic differences between conductors and superconductors							
	CO303C.8. illustrate the some exciting phenomena such as Meissner effect, Isotope						
·	of superconductors						
	perconductors and						
applications of superconductors							
COURSE SYLLABUS							
Content of Each Unit	Hours of Each						
	Unit						
Crystal Structure [Course Outcome(s): CO303C.1 & CO303C.2]							
Crystal Structures and Lattices with Basis, Miller Indices, Common							
Crystal Structures, Reciprocal Lattice, Brillouin Zones, X-ray							
Diffraction by a Crystal and Their Equivalence, Laue Equations,	15						
	co303C.3. explain the theories and phenomena of lattice dyname and thermal properties (specifically specific heat) in solids co303C.4. calculate the specific heat and density of states of various co303C.5. interpret the electrical conductivity and resistivity relaxation Fermi energy, electronic specific heat, and band formation co303C.6. recognize the importance of effective mass, nearly free tight binding approximation co303C.7. identify the basic differences between conductors and co303C.8. illustrate the some exciting phenomena such as Meieffect, London's equations, BCS theory, and Josephson effect commercial applications of superconductors commercial applications of superconductors course syllabus content of Each Unit crystal Structure [Course Outcome(s): co303C.1 & co303C.2] Crystal Structures, Reciprocal Lattice, Brillouin Zones, X-ray						

Ewald Construction, Brillouin Interpretation, Intensity of X-ray Reflections: Atomic Scattering Factor; Geometrical Structure Factor, Structure Factors, Structure Factor; Experimental Methods of Structure Analysis: Laue's Method; Rotating Crystal

	Method; Powder Method, Diffraction from Non-Crystalline Systems.	
2	Lattice Dynamics, Crystal Binding and Thermal Properties [Course Outcome(s): CO303C.3 & CO303C.4] Classical Theory of Lattice Dynamics: Vibrations of Crystals with Monatomic Basis and Two Atomic Basis; Dispersion Relation; Group Velocity; Acoustical and Optical modes, Bonding in Solids, Elastic Constants and Properties, Phonons: Quantization of Lattice Vibration; Phonon Momentum; Inelastic Scattering of Neutrons by Phonons, Thermal Properties: Heat Capacity; Density of States; Normal Modes; Debye and Einstein Models.	15
3	Free Electrons and Energy Band in Solids [Course Outcome(s): CO303C.5 & CO303C.6] Free Electron Gas Model and Its Limitations, Electrons Moving in One and Three Dimensional Potential Well, The Density of States, Fermi Energy, Effect of Temperature on Fermi Distribution Function, The Electronic Specific Heat, The Electrical Conductivity of Metals, Relaxation Time and Mean Free Path, The Electrical Resistivity, Band Theory:Bloch Theorem; The Kronig-Penny Model; Symmetry Properties of the Energy Function; Effective Mass of an Electron; The Nearly Free Electron Model and Tight Binding Approximation; Metals; Insulators and Semiconductors.	15
4	Superconductivity [Course Outcome(s): CO303C.7, CO303C.8 & CO303C.9] Introduction to Superconductivity, Effect of Magnetic Field, The Meissner Effect, Type I and Type II Superconductors, Entropy, Free Energy, Heat Capacity, Energy gap, Isotope Effect, Thermodynamics of the Superconducting Transition, London Equation and Penetration Depth, Coherence Length, BCS Theory of Superconductivity, Cooper Pair, Flux Quantization, DC and AC Josephson Effects: SQUIDs, High Temperature Superconductivity, Applications of Superconductors.	15
	TEXT BOOKS	

- J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, UK, 2nd Edition, 1979.
 J. F. Annett, Superconductivity Super fluids and Condensates, Oxford University Press, UK, 1st Edition, 2004.

- 3. **J. P. Srivastava**, Elements of Solid State Physics, Prentice-Hall of India, 2nd Edition, 2006.
- 4. **H. Ibach and H. Luth**, Solid State Physics: An Introduction to Theory and Experiment, Springer, Germany, 4th Edition, 2009.
- 5. **M. A. Wahab**, Solid State Physics: Structure and Properties of Materials, Narosa Publications, India, 2nd Edition, 2009.
- 6. **C. Kittel**, Introduction to Solid State Physics, John Wiley and Sons, USA, 8th Edition, 2012.
- 7. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, USA, Revised Edition, 2016.
- 8. **S. O. Pillai,** Solid State Physics, New Age International Publishers, 8th Edition, 2018.

LABORATORY III

Scheme Version: 2021-22	Name of the subject: Laboratory III	0	0	P 12	C	Semester: III (2 nd Year)	Contact Hours per Week: 12 Total Hours: 180
Subject Code: SBS PHY 01 304 CC 00126	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks: 100)	CIE	30 Marks 70 Marks	Examination Duration: 3 hours Prerequisite of Course: None		
Course Description	Aim of Lab III is to train students for advanced practical related to solid state physics, nuclear physics, electronics, numerical techniques and material science. Each student is required to perform at least five experiments from Section A and at least three experiments from any one of the optional subtopics of Section B: (i) Electronics (ii) Thin Film and Nano-Material (iii) Numerical Techniques; depending upon the courses opted under discipline centric elective course						
Course Objectives	 To train students on advanced experiments To give training on advance instruments To introduce students to latest numerical techniques 						

After completion of this course, the students will be able to

CO304C.1. Apart from some experiments based on nuclear physics, electronics, computation and solid state physics.

Course Outcomes

CO304C.2. To understand the basic synthesis and characterization techniques for different materials such as thin films and nanoparticles.

CO304C.3. students will also perform the advance experiments like DTA, TGA, UV-VIS, Microwave furnace and thin film coating techniques.

CO204C.4. Students will advance techniques of numerical analysis

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Uni
1	 Kerr Effect Curie Temperature B-H curve Dielectric constant Solid State Nuclear Track Detector (SSNTD) G.M. Counters: characteristics, dead time and counting statistics Scintillation detector-energy calibration, resolution and determination of gamma ray energy Quinks tube method to find susceptibility of a material Nuclear Magnetic Resonance Zeeman Effect To study Lattice Dynamics 	100
2	(i) Electronics 1. PCM/delta modulation and demodulation 2. Fiber optic communication 3. Modulation/Demodulation 4. 4-bit ripple counter (ii) Thin Film and Nano-Material 1. Data Analysis of XRD, SEM and TEM 2. Chemical Deposition (for CNT growth) 3. ZnO wire by thermal oxidation 4. Band gap estimation by Tauc-plot method 5. Thin film deposition technique 6. DTA/TGA analysis (iii) Numerical Techniques	80

- 1. Solution of Linear algebraic equation: Gauss Jordon elimination, Singular Value Decomposition, Sparse linear system.
- Evaluation of Functions: special functions, evaluation of functions by path integration, incomplete gamma, beta function.
- 3. Random Numbers: Uniform random numbers generators, statistical distributions and their properties, Rejection Methods, transformation method, simple Monte Carlo integration, Adaptive and recursive Monte Carlo methods, Test of randomness.
- 4. Signal Processing: FFT, IFFT, Filtering with FFT, convolution and correlation functions, application to real time series data.
- 5. Eigen systems: Solving eigenvalues and finding eigen functions of Schrodinger equation for analytically unsolvable potentials using variational principle.

- 1. Albert Malvino, Digital Principles and Applications, McGraw Hill, New York, 4th Edition, 1986.
- 2. **A. C. Melissinos, J. Napolitano,** Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.
- 3.**W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,** Numerical Recipes in C/C++: The Art of Scientific Computing, Cambridge University Press, 3rd Edition, 2007.
- **4. J. P. Sethna,** Statistical Mechanics: Entropy, Order Parameters, and Complexity, Oxford University Press, 2nd Edition, 2007.
- **5. E. Balagurusamy,** Numerical Methods, Tata McGraw Hill, New Delhi, 1st Edition, 2017.

Physics of Electronic Material and Devices

Scheme Version:	Name of the subject: Physics of	L	Т	Р	С	Semester:	Contact Hours per Week: 4
2021-22	Electronic Material and Devices	3	1	0	4	II (2 nd Year)	Total Hours: 60
Subject Code:	Applicable to	Evalua		30	Examir	nation Duration	1: 3 hours
SBS PHY 01	Programs: M.Sc.	tion	CIE	Marks			
301 DCEC	Physics	(Total	CIE				
3104		Marks:		70	Prerequisite of Course: None		
		100)	TEE	Marks			
Course	This course inter	ds to pr	rovide knowl	edge abou	ut band	structure and	delectronic
Description	properties of sem	niconducti	ing materials	. In additio	on, this	course aims t	o provide a
	detailed theory and design of electronic, microwave and photonics devices.						
Course	To acquir	e the f	undamental	knowledg	e and	expose to th	ne field of
Objective	semicondu	luctor theory and devices and their applications.					
Course	On completion of the course, student would be able:						
Outcomes	CO301D.1. To describe the properties of materials and application of semiconductor						

electronics

CO301D.2. To understand the oncepts of recombination and generations of charge carriers

CO301D.3. To understand basic properties of Metal-Semiconductor junction.

CO301D.4. To understand the working, design and applications of various semiconducting devices like rectifiers, clippers, LED, Solar cells.

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Fundamentals of Semiconductors [Course Outcome(s): CO301D.1] Carrier concentration of semiconductor, Transport Equations, Fundamentals of Compound Semiconductors: Introduction of Compound Semiconductors, Properties of Compound semiconductors, Synthesis of Compound Semiconductors. Crystal structures of Elemental and III-IV	15
2	Carrier mobility in semiconductors [Course Outcome(s): CO301D.2] Electron and Hole conductivity in semiconductors, Shallow impurities in semiconductors (Ionization Energies), Deep Impurity states in semiconductors, Carrier Trapping and recombination/generation in semiconductors, Shockley read theory of recombination, Switching in electronic devices.	15
3	Metal-semiconductor, Metal-Insulator-Semiconductor and MOS devices [Course Outcome(s): CO301D.3] Native oxides of Compound semiconductors for MOS devices and the interface state density related issues. Metal semiconductor contacts, Schottky barrier diode, Metal semiconductor Field Effect Transistors (MESFETs): Pinch off voltage and threshold voltage of MESFETs. D.C. characteristics and analysis of drain current. Velocity overshoot effects and the related advantages of GaAs, InP and GaN based devices for high speed operation. Sub threshold characteristics, short channel effects and the performance of scaled down devices.	15
4	High Frequency Devices [Course Outcome(s): CO301D.4] Essential Condition of High frequency device and compound semiconductor, Tunnel diode, MIS Tunnel diode, Degenerate and Non-degenerate semiconductor, MIS switch diode, MIM Tunnel diode. IMPATT diode. Characteristics, breakdown Voltage, Avalanche Region and Drift Region, Transferred electron devices.	15

Photonic devices: LED and LASER, Photo detectors, Solar-cells.

TEXT BOOKS

- 1. **A.S. Grove**, Physics and Technology of Semiconductor Devices, WILEY, United States, 1st Edition , 1967.
- 2. **B.L. Sharma, Metal**, Semiconductor Schottky Barrier Junction and their Applications, Springer, USA, 1st Edition, 1984.
- 3. E. H.Rhoderick, Metal/Semicond uctor Contacts, Clarendon Press, UK, 1st Edition, 1988.
- 4. **Jasprit Singh**, Semiconductor Devices Basic Principles, John Wiley & Sons, United States, 1st Edition, 2000.
- 5. **S.M. Sze**, Physics of Semiconductor Devices, John Wiley & Sons, United States, 2nd Edition, 2003.

Nuclear Reactor Physics

Scheme Version:	Name of the subject: Nuclear Reactor	L	Т	Р	С	Semester:	Contact Hours per Week: 4
2021-22	Physics	3	1	0	4	III (2 nd Year)	Total Hours: 60
Subject Code:	Applicable to	Evalua		30	Examination Duration: 3 hours		
SBS PHY 01	Programs: M.Sc.	tion	CIE	Marks			
302 DCEC	Physics		_				
3104		(Total		70	Prerequisite of Course: None		
		Marks:	TEE	Marks			
		100)					
Course Description	This course is int nuclear reactor an			mary but v	wide theoretical knowledge about		
Course	• To und	erstand the	theoretical an	d experimen	tal know	ledge about nucle	ear reactors.
Objectives	• To kno	w about th	ne basic designs of nuclear reactors.				
	• To und	erstand the	e need of nucle	ar fuel and v	vaste management.		

	After completetion of this course, students would be able to:
	CO302D.1. Understand the nuclear fission reactions.
Course Outcomes	CO302D.2. Learn about neutron sources and moderators.
	CO302D.3. Get knowledge about working of nuclear reactors.
	CO302D.4. Get knowledge about different types of power reactors
	CO302D.5. Learn how to manage the nuclear fuel and waste.

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Nuclear Reactions: [Course Outcome(s): CO302D.1] Characteristics of atomic nucleus, Binding energy, Nuclear fission, Cross section, Interaction of neutrons with nuclei.	15
2	Neutron moderation: [Course Outcome(s): CO302D.2] Inelastic scattering, Elastic collisions, Moderating ratio, Slowing down Density, Resonance escape, Moderators, Neutron sources, Prompt neutrons, Fast fission, Fission energy, Thermal utilization, Fission products, Chain reaction, Multiplication factor, Leakage of neutrons, Critical size, Diffusion and slowing down theory, Homogenous and heterogeneous reactors.	15
3	Nuclear Reactors: [Course Outcome(s): CO302D.3] Fuel materials, Moderator materials, Cladding materials, Coolant materials and control materials, Control requirement calculations, Means of control, Reactor kinematics: Neutron lifetime, Generation time, Point kinetic equation and solution of the equations for step input reactivity.	15
4	Types of Power reactors & Fuel and waste management: [Course Outcome(s): CO302D.4 & CO302D.5] Boiling water reactors, Pressurized water reactors,	15

Pressurized heavy water reactors, Light water cooled graphite moderated reactors, Gas cooled reactors, Advanced gas cooled reactors, High temperature gas cooled reactors and liquid metal cooled reactors and Fast breeder reactors, Fuel management schemes, Fuel composition, Fuel cycle cost and waste management.

Laboratory Assignments:

Visits to fission reactor sites and related case studies for generation of nuclear energy.

TEXT BOOKS

- 1. Lamarshs, J.R., Introduction to Nuclear Reactor Theory, Addison-Wesley Publishing Co., 1966.
- 2. **Glasstons**, Sammuel and Sesonske, Alexander, Nuclear reactor Engineer, CBS Publishers & Distributors, 1986.

PLASMA PHYSICS AND FUSION REACTOR

Scheme Version:	Name of the subject: Plasma Physics and Fusion	L	Т	Р	С	Semester:	Contact Hours per Week: 4	
2021-22	Reactor	3	1	0	4	III (2 nd Year)	Total Hours: 60	
Subject Code:	Applicable to	Evaluation		30	Examination Duration: 3 hours			
SBS PHY 01 303	Programs:	/Total	CIE	Marks				
DCEC 3104	M.Sc. Physics	(Total Marks:	CIE					
	Wilse. Thysics	100)	TEE	70 Marks	Mathen	nisite of Course natical Physics a m Mechanics		
Course	Students will b	e exposed t	theor	y related	to moti	ion of charge	particle in	
Description	inhomogeneous	us field, production of plasma and usage of plasma.						

Course	To make students familiar with fourth state of matter	
Objectives	To aware students about plasma creation in laboratory	
	To make students familiar with production of energy	rgy in fusion
	reactor	
C	After completion of this course, the students will have understanding of	of
Course Outcomes	CO303D.1. what are theoretical method to study the charge particle m	notion
Outcomes	CO303D.2 Idea behind the magnetic confinement	1011011
	CO303D.3. how to generate plasma in the laboratory	
	CO303D.4. how plasma production is helpful to make fusion reactors	
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
	Introduction: [Course outcomes: CO303D.1]	
	Plasma state, plasma parameters, applications of plasmas.	
1	Single particle orbit theory: Drift of charge particle under different	15
	combinations of electric and magnetic field, crossed electric and	
	magnetic fields, homogenous electric and magnetic fields, spatially	
	and time varying electric and magnetic fields,	
	The Boltzmann Equation: [Course outcomes: CO303D.2]	
2	Simplified magneto-hydrodynamic equations - Electron plasma oscillations Debye shielding phenomenon and criteria for plasma, motion of charged particles in electromagnetic field, Electric field drift, parallel acceleration, curvature drift, adiabatic invariants; fundamental equations of magneto-hydrodynamics(MHD), magnetic confinement.	15
	Production of Plasma in laboratory: [Course outcomes: CO303D.3]	
3	Physics of glow discharge, electron emission, ionization breakdown of gases, Paschen's law and different regimes of E/ρ in a discharge.	15
	Plasma diagnostic: Probes, energy analysers, magnetic probes and optical diagnostics, preliminary concepts.	

4	Fusion Reactor: [Course outcomes: CO303D.4] Potential of fusion energy, controlled thermonuclear reactions, fusion reactions, fusion cross-sections, fusion power generation, energy balance for fusion systems, ignition criterion, gain factor, plasma heating, ohmic heating, neutral beam injection, radio frequency heating, inertial confinement fusion, tokamaks, stability,	15
	frequency heating, inertial confinement fusion, tokamaks, stability, operating limits and transport.	
	TEXT BOOKS	

- 1. Nicholson, D. R., Introduction to Plasma theory, Wiley, 1983
- 2. Chen, F.F., Introduction to Plasma Physics, Springer, 1984
- 3. Sturrock, P.A., Plasma Astrophysics, Cambridge University Press, 1994
- 4. Choudhuri, A.R., The Physics of Fluids and Plasmas, Cambridge University Press, 1998

PHYSICS OF NANOMATERIALS

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	Subject:						hours per
2021-2022	Physics of Nanomaterials	3	1	0	4	III(2 nd Year)	week: 4 Total Hours: 60
6 11 1 6 1	A cell cell le le			20		III(Z fear)	
Subject Code: SBS PHY 01 304	Applicable to Programs:	Evaluation (Total	CIE	30 Marks	Examination Duration: 3 hours		
DCEC 3104	M.Sc. Physics	Marks): 100	TEE	70 Marks		equisite of co Physics	urse: Solid
Course	To introduce knowledge on basics of nanoscience and the fundamental concepts behind						
Description	size reduction in vario		•	•			

Course Objectives	 The objective of this course is to provide the known nanostructure materials, materials growth aspects if and size selection and application of nanoscale materials. The course lays foundation for advanced courses if materials and their applications. 	mportant for size control als.					
Course	On completion of this course, student will learn:						
Outcomes:	CO304.1 Correlate properties of nanostructures with their characteristics.	CO304.1 Correlate properties of nanostructures with their size, shape and surface characteristics.					
	CO304.2 Qualitatively describe how the nanoparticle size carrystal structure, reactivity, and mechanical properties.	an affect the morphology,					
	CO304.3 Understand the effects of quantum confinement o and corresponding physical and chemical properties of material						
	CO304.4 Describe several synthesis methods for fabrication of inorganic nanoparticles, one-dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials, and nanostructured bulk materials, and also could describe how different lithography methods can be used for making nanostructures.						
	CO304.5 Understand some specific materials like graphene and carbon nanotubes for various applications.						
	CO304.6 To comprehend basic knowledge on the characteriz different methods.	ation of nanomaterials by					
	COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit					
1.	Introduction to Nanostructure Materials: [Course Outcome (s): CO304.1 & CO304.2] Nanoscience & nanotechnology, size dependence of	15					
	properties, Chemical- reactivity, Mechanical properties at nanoscale, Moor's law, Surface energy and Melting point (quasi melting) of nanoparticles, Excitons, Density of states, Variation of density of states with energy and size of crystal.						
	Population of conduction and valance band for 0D, 1D, 2D & 3D material.						

2.	Quantum Size Effect: [Course Outcome (s): CO304.3] Quantum confinement and its consequences, quantum wells, quantum wires and quantum dots and artificial atoms. Electronic structure from bulk to quantum dot. Electron states in direct and indirect gap semiconductors nanocrystals. Confinement in disordered and amorphous systems.	15
3.	Synthesis of Nanomaterials: [Course Outcome (s): CO304.4 & CO304.5] Key issue in the synthesis of Nanomaterials, Different approaches of synthesis, Top down and Bottom up approaches, Thermal and e-beam evaporation, Gas phase synthesis of nanopowders, chemical and colloidal methods, sol gel method, functionalization of nanoparticles. Ball Milling, Specific materials like graphene and carbon nanotubes (CNTs).	15
4.	Characterization techniques: [Course Outcome (s): CO304.6] XRD (Scherrer's formula), Electron Microscopy: Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning Probe Microscopy (SPM), Atomic Force Microscopy (AFM), Raman Spectroscopy and XPS, Estimation of band gap using UV-Vis-NIR spectroscopy, Thermogravimetric analysis.	15

REFERENCE BOOKS

- 1. D. Bimberg, M. Grundmann, N.N. Ledenstov, Quantum Dot Hetrostructures, John Wiley & Sons, United States, 1st Edition, 1999.
- 2. Charles P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology, John Wiley & Sons, United States, 1st Edition, 2003.
- 3. Guozhong Cao, Nanostructures & Nanomaterials, Synthesis, Properties & Applications, Imperial College Press, UK, 1st Edition, 2004
- 4. Liming Dai, Carbon Nanotechnology, Elsevier, Netherland, 1st Edition, 2006.
- 5. Michael J. O'Connell, Carbon Nanotubes: Properties and Applications, CRC Press, USA, 1st Edition, 2006.
- 6. T. Pradeep, Nano: The Essentials, McGraw Hill Companies, New York, 1st Edition, 2007.
- 7. Hornyak G.L., Tibbals H.F., Dutta J., Moore J.J., Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 1st Edition, 2008.

Characterization Techniques for Materials

Scheme Version:	Name of the subject: Characterization	L	Т	P	С	Semester:	Contact Hours per Week: 4
2021-22	Techniques for Materials	3	1	0	4	l (1 st Year)	Total Hours: 60
Subject Code: SBS PHY 01 305 DCEC	Applicable to Programs: M.Sc. Physics	Evalua tion (Total	CIE	30 Marks	Examir	nation Duration	n: 3 hours
3104		Marks:		70	Prerequisite of Course: None		

	100) TEE Marks						
Course Description	This course covers the fundamental principles and practical applications of different classes of materials and characterization techniques. The course discusses characterization techniques used for chemical and structural analysis of materials, including metals, ceramics, polymers, composites, and semiconductors. The topics include important spectroscopic, microscopic and thermal methods for materials characterization.						
Course Objectiv	 To introduce the materials characterization techniques to the students Help the students to understand the instrumentation aspects To provide a detailed understanding of data interpretation To provide hands on experience of the characterization techniques 						
	Course Outcomes CO305D.1. To determine crystal structure of specimen and estimate its crystallite size and stress CO305D.2. To choose an appropriate microscopy techniques to investigate microstructure of materials at high resolution CO305D.3. To use appropriate spectroscopic technique to measure vibrational/electronic transitions to estimate parameters like energy band gap, elemental concentration, etc. CO305D.4. To apply thermal analysis techniques to determine thermal stability of and thermodynamic transitions of the specimen.						
Unit No	Content of Each Unit Hours of Each Unit						
Unit No.							
1	X-ray diffraction. Diffraction under non-ideal conditions. Atomic scattering and Geometrical structure factors. Factors influencing the intensities of diffracted beams. Phase identification, indexing and lattice parameter determination, Powder X-ray diffractometer. Applications of XRD in bulk and nano-materials.						

Microscopy techniques [Course Outcome(s): CO305D.2]

	Introduction to Microscopes, Optical microscopy, Transmission Electron Microscopy (TEM); Basic Electron scattering, Concepts of resolution, TEM instruments, Various imaging modes, Analysis of micrographs, Electron Energy Loss Spectroscopy, Scanning Electron Microscopy (SEM), Scanning Probe Microscopy (AFM and STM)	
3	Spectrophotometric analysis of materials [Course Outcome(s): CO305D.3] UV-VIS spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron Spectroscopy (XPS).	15
4	Thermal analysis techniques [Course Outcome(s): CO305D.4] Differential thermal analysis (DTA), Differential Scanning Calorimetry (DSC), Thermo-gravimetric analysis (TGA), Electrical characterization techniques: Electrical resistivity in bulk and thin films, Hall effect, Magnetoresistance	15

- **6.** Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, 1986.
- 7. Wachtman, J.B., Kalman, Z.H., Characterization of Materials, Butterworth Heinemann, 1993.
- 8. **Murphy, Douglas B,** Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Inc. USA, 2000.
- 9. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, 2001.
- **10. B. Raj**, **T. Jayakumar**, **M. Thavasimuthu**, Practical Non-Destructive Testing, 2nd ed., Narosa Publishing House, 2002.
- 11. D. A. Skoog, F.J. Holler, S. R. Crouch, Instrumental Analysis, Cengage Learning, 2007.
- 12. Li Lin, Ashok Kumar, Materials Characterization Techniques Sam Zhang; CRC Press, 2008.
- **13. Y. Leng**, Materials Characterisation: Introduction to Microscopic and Spectroscopic Methods, John Wiley & Sons (Asia), 2008.
- **14. J. C. Vickerman**, **I. Gilmore**, Surface Analysis: The Principal Techniques, 2 nd ed., John Wiley & Sons, Inc.2009.

General Theory of Relativity

Scheme Version: 2021-22	Name of the subject: General Theory of	L	T	P	C	Semester:	Contact Hours per Week: 4		
	Relativity	3	1	0	4	Year)	Total Hours: 60		
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	30 Marks	Exam hours	ination Dur	ation: 3		
PHY 01 306	M.Sc. Physics	(Total	CIE	70		eanisite: Cl	assical		
DCEC 3104	Wi.Sc. Thysics	Mark	TEE	Marks		Prerequisite: Classical Electrodynamics,			
		s:		1,101112	Mathematical Methods in				
		100)			Physics I & II				
Course	Aim of the cour	se is to f	amiliarize s	tudents w	ith diffe	erent aspects	of theory of		
Description	gravitation.								
Course	The stude	The student will come to understand							
Objectives	. Special Theory of Relativity								
Objectives	. General Theory of Relativity								
	. Few applications of Geeral Theory of Relativity.								
	On completion of the course, student would be able to								
Course	CO306D.1 : understand the mathematical rigour that goes behind the theory of								
Outcomes	relativity and also be able to								
	CO306D.2: Understand few applications of general theory of relativity.								
	CO306D.3: Understand the Special theory of relativity CO306D.4: Understand the origin of gravitational waves								
	CO300D.4 . CIR		RSE SYLL		iiai wav	CS			
Unit No.	Content of Each Unit					Но	urs of Each		
	Content of Each office						Unit		
	Historical Back	-				0.3]			
	Review of Newto		-				1.5		
1	relativity. Prelude to General relativity, historical 15								
	developments, 4-Vectors and 4-tensors, examples from								
	physics Tensors in GTR [Course Outcomes : CO306D.1]								
	Principle of Equi	-			-	ional			
2	force, Tensor An		-				15		
_	Gravitation, Rien	-		-			-		
	Tensor, Curvature Scalar								
	Applications of GTR [Course Outcomes : CO306D.2]								
3	Einstein Field 1						15		
	Theory of Relat	ivity, Sc	wartzchild	Solution,	Gravita	tional			

	lensing				
4	Gravitational Radiation [Course Outcomes: CO306D.4] Gravitational waves: generation and detection, Energy,	15			
	momentum and angular momentum in Gravitation				
Text Books					

1. S. Weinberg, Cosmology, Oxford University, 1 st Edition, 2008.

- 2. Ray D'Inverno, Introducing Einstein's General Relativity, Oxford University, 1 st Edition, 1992.
- 3. M. Berry, Principle of Cosmology and Gravitation, Taylor & Francis; 1 st Edition, 1989.
- 4. **Tai L. Chow**, Introduction to General theory of Relativity and Cosmology, Springer, 1 st Edition, 2008.
- 5. **P.A.M. Dirac**, General theory of Relativity, Wiley-Blackwell, 1 st Edition, 1975.
- 6. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Publishere, Shroff, 2 nd Edition, 2010

Digital Electronics and Microprocessor

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact Hours per
2021-22	Digital Electronics and Microprocessor	3	0	2	4	III (2 nd Year	Week: 4 Total Hours: 60
Subject Code:	Applicable to	Evalua		30	Examir	 nation Durat	ion:3 hours
SBS PHY 01 307 DCEC	Programs:M.Sc. Physics	tion	CIE	Marks			
3024	PHYSICS	(Total Marks: 100)	TEE	70 Marks	Semico	Prerequisite of Course: Physic Semiconductor Devices, Analo Electronics	
Course Description	3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						
Course Objectives	 To understand the fundamentals of digital systems. To make familiar with various logic families and their implementation in logic circuits. To understand the design of microprocessors and their applications. 						
Course Outcomes	After completion of this course, students will be able to learn about: CO307D.1. The basics of digital systems and Boolean algebra. CO307D.2. Digital arithmetic operations and combinational & sequential circuits. CO307D.3. Various memory devices & their applications. CO307D.4. Microprocessor and its various operations.						
COURSE SYLLABUS							
Unit No.		Conte	ent of Each U	nit		Н	ours of Each Unit

	Digital Systems: [Course Outcome(s): CO307D.1]	
1	Digital signals, binary number system, conversions, Boolean algebra, logic gates, standard gate assemblies, implementing circuits from boolean expressions, SOP, POS, Simplifying logic circuits: algebraic method, K-mapping, Error detection: Parity method, checksum method.	15
2	Digital Circuits: [Course Outcome(s): CO307D.2] Combinational Circuits: Half Adder, Full Adder, Decoder, Encoder, Multiplexer, Demultiplexer and their applications. Sequential Circuits: Flip flops; SR, T, D and J-K, Shift Register, Parallel and Serial data transfer, Timming Waveforms. Counters: Synchronous and Asynchronous Up, Down, and Bidirectional Counters, Timing Wave forms. Digital to Analog Converters and their properties, weighted resistor and R-2R Ladder type, Analog to digital Converters: Flash, Successive approximation, Sigma- Delta ADC.	15
3	Applications: [Course Outcome(s): CO307D.3] Memory: Read Only Memory (ROM): PROM, EPROM, EPROM, Applications, Programming a ROM, Random Access Memory(RAM): SRAM, DRAM, Applications, Memory Storage cell, Read and Write operations, Programmable Logic Devices (PLD) Digital Display, Seven segment display.	15
4	8085 Microprocessor: [Course Outcome(s): CO307D.4] Basics of Microprocessor-8085, PIN description, Microprocessor initiated operations. Internal data operations. Introduction to 8085 assembly language programming. 8085 instruction, Microprocessor Applications, Recent trends in Microprocessor Technology.	15

Laboratory Assignments:

To construct logic gates OR, AND, NOT, NOR, NAND gates using discrete components and verify their truth tables

To construct logic gates AND, NOT, EX-NOR and EX-OR using NAND gates and verify their truth tables. To perform 4 bit DAC and ADC operations

To arrange a data set in ascending order using 8080 microprocessor.

Use the IC555 chip as a stable, bistable and monostable multivibrator.

To study various operations of Arithmetic logic Unit (ALU).

To perform the addition and subtraction of n 8 bit numbers using 8085 microprocessor

To perform the multiplication and division of two 8 bit number using 8085 microprocessor

To write a program to arrange an array of data in ascending order using 8085 microprocessor

To design and construct multiplexer and demultiplexer and verify their truth tables.

To study the encoders and decoders

To perform BCD to Binary operation using 8085 microprocessor.

- 1. **Malvino A.P.** and **Brown A.**, Digital Computer Electronics, Prentice-Hall, India, New Delhi, 3rd Edition, 1999.
- 2. **Gaonkar R. S.**, Microprocessor Architecture, Programming and Applications, Prentice-Hall, India, New Delhi, 2nd Edition, 2014.
- 3. **Tocci R. J.**, Digital Systems-Principles and Applications, Prentice Hall of India, New Delhi, 8th Edition, 2015.

Programming with Python

Scheme	Name of the		L	Т	Р	С	Semester:	Contact
Version:	subject:							Hours per Week: 4
	Programming							Week: 4
2021-22	with Buthon							Total
2021-22	with Python		3	0	2	4	III (2 nd Year)	Hours: 60
				J		1		
Subject Code	Applicable to		Evalua		30	Exami	nation Duration	n: 3 hours
SBS PHY 01	Programs:		tion	CIE	Marks			
308 DCEC	M.Sc. Physics		(Total		70	Preren	uisite of Cours	e: Basic
3024	,		Marks:	TEE	Marks		edge of comput	
			100)	IEE				
Course	The ob	iective of t	he course	on Comput	ational Me	thods is	to familiarize	the students
Description				l techniques			to ranninanze	the students
2000.150.00		411045 0011	.pacacione	teeliiiques	<i>5</i> , 056 .	,		
Course		To tra	in student	: in scientific	language F	ython		
Objectives		• To ma	ike studen	ts comfortab	ole with co	de writin	g techniques	
		• To app	ply numer	ical methods	using Pyth	non langu	ıage	
	After c	ompletion o	of this cou	rse, students	will be ab	le to lear	n about:	
	CO300	1 Learn	the basics	of programs	mina usina	Dython	as a scientific p	rogramming
Course	langua		LITE DASICS	or prograim	iiiiig usiiig	ryulull	ם אוכוונוונ ב	n og i allillilling
Outcomes			rstand th	e basics of	input ar	nd outpu	ıt formatting	and display
				nical user inte	•	1	8	-1 /
	CO308).3. Design	algorithm	ns for various	numerical	l method	s using Python	and
	CO308	D.4. Solve	selected p	roblems usir	ng Python a	algorithm	s and program	ming.

	COURSE SYLLABUS							
Unit No.	Content of Each Unit	Hours of Each Unit						
1	Basic of Python: [Course Outcome(s): CO308D.1] Computational modeling, python programming for a Physicist, structure of a python program, running python program in console and in editor. constant and variables, numbers-integers, long integer, floating point number, complex number, sequencesstring, list, tuples, dictionaries, operators — arithmetic operators, relational operators.	15						
2	Logical Statements: [Course Outcome(s): CO308D.2] logical operators, assignment operators, conditional operator. Control statements if, if else, if-elif-else, while, for loop, nested if and nested for loops, break and continue.	15						
3	Functions in Python: [Course Outcome(s): CO308D.3] user made, library, inbuilt. Functions definition and declaration, passing arguments, return values, default values and optional parameters. Importing modules, File handling operation with files, opening and closing a file. Formatting inputs and outputs, visualizing data, 2D, 3D, scatter graphs, animating graphs, statistical analysis of data- mean, median, mode, variance.	15						
4	Selected Problem using Python: [Course Outcome(s): CO308D.4] Optimization: designing an algorithm for accuracy, designing an algorithm for speed, Errors in computation and Numerical stability, numerical integration, differentiation. Curve fitting, least squares method principle, Fourier Transform, symbolic computation, numerical computation.	15						

		TEXT BOOKS	
	2.	Patil P. B. &Verma U. P., Numerical Computational Methods, Revis 2013), Narosa Publication.	ed Edition (Reprint
	3.	Fangohr H., Introduction to Python for Computational Science are beginner's guide), (2015), Faculty of Engineering and the Environment Southampton.	
	4.	Rajaraman V., Computer Oriented Numerical methods, 3 rd Edition (2) India Ltd.	2015), Prentice Hall

Research and Publication Ethics

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact Hours per
2021-22	Research and Publication Ethics	2	0	0	2	III (2 nd Year)	Week: 2 Total Hours: 30
Subject Code: SBS PHY 01 310 DCEC	Applicable to Programs: M.Sc. Physics	Evalua tion (Total	CIE	15 Marks	Exami	nation Duration	1: 1.5 Hours
2002	Wilse. Thysics	Marks: 100)	TEE	35 Marks	Prerec	uisite of Cours	e: None
Course Description	1	ctive of the course nake publications	e is to famili	arize the s	tudents	with ethics of r	esearch and
Course Objectives		To train student To make studen					
Course Outcomes		CO310D.1: Understa CO310D.2: Maintair CO310D.3: Understa CO310D.3: Acquire	and the basion the researce	c ethics of r th integrity ntific misco	esearch. and intel nduct an	llectual honesty d proper citatio	

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
	Theory: [Course Outcome(s): CO310D.1, CO310D.2]	
	RPE 01: Philosophy and Ethics (3 hrs.)	
	 Introduction to philosophy: definition, concept, branches, nature and scope, 	
	Ethics: definition, moral philosophy, nature of moral judgements and reactions	
	RPE 02: Scientific Conduct (5 hrs.)	
	Ethics with respect to science and research	
	2. Intellectual honesty and research integrity	
	Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP)	
	Redundant publications: duplicate and overlapping publications, salami slicing	
1	Selective reporting and misrepresentation of data	15
	RPE 03: Publication Ethics (7 hrs.)	
	Publication ethics: definition, introduction and importance	
	 Best practices/standards setting initiatives and guidance: COPE, WAME, etc. 	
	3. Conflicts of interest	
	Publication misconduct: definition, concept, problems that lead to unethical behavior and vice versa, types	
	5. Violation of publication ethics, authorship and contribution-ship	
	6. Identification of publication misconduct, complaints and	
	appeals 7. Predatory publishers and journals	
	Practice: [Course Outcome(s): CO310D.3, CO310D.4]	
	RPE 04: Open Access Publishing (4 hrs.)	
2	Open access publications and initiatives	15
	2. SHERPA/RoMEO online resource to check publisher	
	copyright & self-archiving polices	

- 3. Software tool to identify predatory publications developed by SPPU
- 4. Journal finder / journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer Journal Suggester, etc.

RPE 05: Publication Misconduct (4 hrs.)

- A. Group Discussion (2 hrs.)
 - 1. Subject specific ethical issues, FFP, authorship
 - 2. Conflicts of interest
 - 3. Complaints and appeals: examples and fraud from India and abroad
- B. Software tools (2 hrs.)
 - 1. Use of plagiarism software like Turnitin, Urkund and other open source software tools

RPE 06: Databases and Research Metrics (7 hrs.)

- A. Databases (4 hrs.)
 - 1. Indexing databases Research Metrics
 - 2. Citation databases: Web of Science, Scopus, etc.
- B. Research Metrics (3 hrs.)
 - 1. Impact Factor of journal as per Journal Citation Report, SNIP, SJR, IIP, Cite Score
 - 2. Metrics: h index, g index, i10 index, almetrics

TEXT BOOKS

- 1. Indian National Science Academy (INSA), Ethics in Science Education, Research and Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/Ethics_Book.pdf
- 2. Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get plagiarized 2018, ISBN:978-9387480865.
- 3. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (7415), 179-179, 2012. https://doi.org/10.1038/489179a
- Resnik, D. B., What is ethics in research and why is it important, National Institute of Environmental Health Sciences, 1-10. Retrived from https://www.neihs.nih.gov/research/resources/bioethics/whatis/index.cfm

2011.

- 5. National Academy of Sciences, National Academy of Engineering and Institute of Medicine, On Being a Scientist: A Guide to Responsible Conduct in Research: 3rd edition, National Academics Press 2009. Bird, A., Philosophy of Science, Routledge 2006.
- 6. MacIntyre, A., A Short History of Ethics, London 1967.

Astrophysics of Stars

Scheme Version:	Name of the subject:	L	Т	P	С	Semester:	Contact Hours		
2021-22	Astrophysics of Stars					III(^{2nd}	per Week: 4		
2021-22	of Stars					Year)	Total		
		3	1	0	4		Hours: 60		
Subject	Applicable to	Evalu		30		ination Dura	tion: 3		
Code: SBS	Programs:	ation	CIE	Marks	hours				
PHY 01 309	M.Sc. Physics	(Total	(DIAIA	70		equisite: Inti	roduction		
DCEC 3104		Mark s:	TEE	Marks		ronomy and physics			
		100)			Asiroj	physics			
Course	Aim of the Cour				-	=			
Description	By injecting vas	t amount	s of energy	and mon	nentum	into their su	rround-ings,		
	they act as driver	s for the	evolution of	their host	galaxie	S			
Course	Aim of th	is course	is to under	stand in de	etail wh	at goes on de	ep inside an		
Objectives	object tha	t, to us, i	s a mere pin	prick of lig	ght in th	ne sky.			
Course Outcomes	On completion of CO307D.1: qua CO307D.2: und stars CO307D.3: Und	ntify the erstand h	basic parame ow radiation	eters of sta n interacts	nrs. with ma		rfaces of		
	CO307D.4 : kno	w about 1	the processes				ucture,		
	composition and			ADEIC					
Unit No.			RSE SYLL of Each			Цол	ırs of Each		
Omt 140.		Conte	nt of Each	Omt		1100	Unit		
	Stellar Observation	ons : [Co	urse Outcon	nes : CO3	07D.1]				
	Introduction, Di		0	*	•				
1	radiation, Colors & line spectra, Binary systems : visual 15								
	binaries, Eclipsing & spectroscopic binaries, The Hertzsprung-Russel diagram, Spectral classification								
	Stellar Atmosphe								
2	Stellar atmospho matter, Radiati approximation, atmospheres, Op	ve transf The grey	fer, The Edd atmospher	lington e, Realist	ic mode	el	15		

	shapes, Line strengths	
	Stellar Interiors : [Course Outcomes : CO307D.4]	
	Mechanical structure, The virial theorem, Polytropes,	
3	Equation of state, Energy conservation; diffusive	15
	transport, Mass-luminosity relation; main sequences,	
	Convective transport, Energy generation, Nuclear fusion	
	networks, Fusion rates, Rotation, Stellar model building	
	Stellar Evolution: [Course Outcomes: CO307D.3]	
	The main sequence, The Sun, Massive stars, Star	
4	formation, Pre-main-sequence evolution, Evolution off	15
	the main sequence, Helium burning & beyond, Stellar	
	death, Stellar pulsation, White dwarfs, Neutron stars	
	Text Rooks	

^{1. &}quot;An Introduction to Modern Stellar Astrophysics",

Bradley W Carroll and Dale A Ostlie (ISBN: 978-08053034830), Cambridge University Press (2017)

- 2. "Stellar Structure and Evolution", R. Kippenhahn & A. Weiger, (2012) Springer-Verlag Berlin Heidelberg
- 3. Structure and Evolution of the Stars, by M. Schwarzschild. (ISBN: 9780691652832), 2016, Princton University Press
- 4. Stellar Atmospheres, by Ivan Hubeny, Springer Verlag
- 5. Radiative Processes in Astrophysics: G. Rybiki and A. Lightmann, 2004 WILEY-VCH Verlag GmbH & Co.

Major Research Project

Scheme	Name of t	he		L	Т	Р	С	Semester:	Contact
Version:	subject	:							Hours per
	Main Dana								Week:
	Major Rese	<u> </u>							T. 1.1
2021-22	Project								Total Hours:
				0	0		16	IV (2 nd Year)	Hours:
Subject Code:	Applicable 1	to		Evalua		00	Examir	nation Duration	1:3 hours
SBS PHY 01	Programs:			tion	CIE				
401 DCEC	M.Sc. Physic			(Total		100	Duanan	iaita af Caa	a. Nana
00016	IVI.SC. I HYSIC	.5		Marks:		Marks	Prerequisite of Course: None		
				100)	TEE	IVIALKS			
				•					
Course	Th	ne disse	ertation	topics w	ill be based	on speci	al paper	rs or elective	papers and
Description	1 -	•			-		nmittee	will distribute	the topics
	ace	cording	to the	skill and	merit of the	students.			
Course		•	To ma	ke studen	ts familiar wi	th approac	h to do l	iterature surve	у
Objectives		•	To ma	ke studen	t capable of i	ndepende	nt thinkiı	ng	
		•	Studer	nts will lea	arn basic tech	nniques for	carrying	out research	
	Aft	ter comp	pletion c	of this pro	ject, students	will be ab	le to lea	n about:	
_									
Course				literature		_			
Outcomes			•		or performing	_			
		CO401.3. Analyze the results and tabulate them in a proper manner CO401.4. How to write and dissertation, making presentation and viva etc.							
	co	9401.4.	How to	write and	dissertation,	making pr	esentatio	on and viva etc.	

Evaluation: The evaluation will be done by an external examiner. External examiner will award the grades based on quality of research work done recorded in dissertation and presentation made by student.

ADVANCED NULEAR PHYSICS

Scheme Version: 2021-22	Name of the subject: Advanced Nuclear Physics	3	1	P 0	C	Semester: IV (2 nd Year)	Contact Hours per Week: 4 Total Hours: 60
Subject Code: SBS PHY 01 401 DCEC 3104	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks: 100)	CIE	30 Marks 70 Marks	Prerequ	ation Duration uisite of Course natical Physics a	<u> </u>
Course Description	To impart knowl understanding of heavy ion physic	of related read	tion dyna	amics. Bes	s, proper		
Course Objectives	 Students will understand about the stability of nuclei away from the drip line and deformed nuclei Students will know the different theoretical approaches to explain the structure of nuclei Student will understand the basics of heavy ion nuclear physics and its correlation to Astrophysics 						
Course Outcomes	CO401D.1. Know CO401D.2. Under CO401D.3. Under CO401D.3.	v the basic pro erstand the no	perties c	of deforme odels to st	ed shapes udy the n	of nuclei uclear structure	

	astrophysics CO401D.4. Understand the nuclear astrophysics and related application	ns.
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
	Nuclear deformations: [Course outcomes: CO401D.1:]	
1	Effect of quadrupole deformations and higher multipole deformations, Nuclear orientation effect, static and dynamic deformations, deformed magic shells and related nuclear aspects, Importance of Exotic nuclear systems, halo shapes and bubble effect.	15
	Collective Model of Nucleus: [Course outcomes: CO401D.2:]	
2	Collective motion, parameterization of nuclear surface, Rotation of deformed nuclei, Collective model Hamiltonian, nuclear wave function for even-even nuclei and odd-A nuclei, Rotation-vibrational coupling, Nilsson model, Cranking shell model.	15
	Heavy-Ion Physics: [Course outcomes: CO401D.3:]	
3	Total Hamiltonian function, Scattering of deformed nuclei, Fusion fission dynamics, Radioactive ion beams, tightly and loosely bound interactions, Nuclear isomers, Nuclear Molecules, Nuclear Dynamics at Intermediate and high energies, Relativistic heavy ion collisions	15
	Nuclear Astrophysics: [Course outcomes: CO401D.4:]	
4	Hot big bang cosmology, Primordial nucleosynthesis, Stellar nucleosynthesis, energy production in stars, pp chain, CNO cycle, production of elements.	15
	Nuclear Applications : Recent trends in nuclear structure physics and related important applications	
	TEXT BOOKS	
1.	Pal, M.K., Theory of Nuclear Structure, East-West Press Delhi, 1983.	
2.	Preston M. A. and Bhaduri R. K., Structure of Nucleus Addison-Wesley, 20	
3.	Lilley J.S., Nuclear physics principles and applications John Wiley & sons L Krane K.S. Nuclear Physics, Wiley India Pyt. Ltd. 2008	.tu., 2007.

4. Krane K.S. Nuclear Physics, Wiley India Pvt. Ltd., 2008.

PARTICLE PHYSICS

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	subject:						Hours per	
	Particle						Week: 4	
	Physics						Total	
2021-22							Total Hours: 60	
		3	1	0	4	IV (2 nd Year)	Hours. 00	
Subject Code:	Applicable to	Evaluation		30	Examin	ation Duration:	: 3 hours	
SBS PHY 01 402	Programs:	(Total	CIE	Marks				
DCEC 3104	M.Sc. Physics	Marks:	0.1					
		100)		70	Prerequ	isite of Course	:	
		•	TEE	Marks	Mathematical Physics and			
			166			m Mechanics, N	luclear	
					Physics			
Course	To impart the kr	nowledge of f	undamer	ıtal particl	es, funda	mental interac	tion and the	
Description	range and stren							
	matter antimatt	er.						
	• Stud	dents will u	ındersta	nd the o	different	type of par	rticles and	
Course		ractions amo						
Objectives	• Stud	dents will be	able to u	ınderstand	d the con	servation laws	s in particle	
	phy						•	
			to know	the prod	luction ci	ross section fo	r particles	
	 Students will get to know the production cross section for particles Students will understand the quark model. 							
Course	After completion of this course, the students will be able to							
Outcomes								
	CO402D.1. Need	l of standard r	nodel an	d its limita	tions and	I the properties	of QCD.	

CO402D.2. Basic rules of Feynman diagrams and the quark model for hadrons **CO402D.3.** Properties of neutrons and protons in terms of a simple quark model **CO402D.4.** . Weak interaction between quarks and how that this is responsible for β decay.

CO402D.5 Leptons and how the(electron) neutrinos and (electron) antineutrinos are produced during β + and β - decays respectively

COURSE SYLLABUS

Introduction: [Course outcomes: CO402D.1:] Fermions and bosons, Particles and antiparticles, Quarks and leptons, Interactions and fields in particle physics, Classical and quantum pictures, Yukawa picture, Types of interactions - electromagnetic, weak, strong and gravitational, units. Invariance Principles and Conservation Laws: [Course outcomes: CO401D.2:] Invariance in classical mechanics and in quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. 15 Hadron-Hadron Interactions: [Course outcomes: CO401D.3:] Cross section and decay rates, Pion spin, Isospin, Two-nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. Static Quark model of Hadrons: [Course outcomes: CO401D.4, CO402D.5:] The Eightfold way, Meson nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU (3) symmetry, Quark spin and color, Quark-antiquark combinations. Weak Interactions: Classification of weak interactions, Fermi theory, Weinberg-Salam model, Parity non-conservation in β-decay, Helicity of neutrino, Experimental verification of parity violation, K-decay.	Unit No.	Content of Each Unit	Hours of Each Unit
CO401D.2:] Invariance in classical mechanics and in quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem. Hadron-Hadron Interactions: [Course outcomes: CO401D.3:] Cross section and decay rates, Pion spin, Isospin, Two-nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. Static Quark model of Hadrons: [Course outcomes: CO401D.4, CO402D.5:] The Eightfold way, Meson nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU (3) symmetry, Quark spin and color, Quark-antiquark combinations. Weak Interactions: Classification of weak interactions, Fermi theory, Weinberg-Salam model, Parity non-conservation in β-decay, Helicity	1	Fermions and bosons, Particles and antiparticles, Quarks and leptons, Interactions and fields in particle physics, Classical and quantum pictures, Yukawa picture, Types of interactions -	15
section and decay rates, Pion spin, Isospin, Two-nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy. Static Quark model of Hadrons: [Course outcomes: CO401D.4, CO402D.5:] The Eightfold way, Meson nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU (3) symmetry, Quark spin and color, Quark-antiquark combinations. Weak Interactions: Classification of weak interactions, Fermi theory, Weinberg-Salam model, Parity non-conservation in β-decay, Helicity	2	CO401D.2:] Invariance in classical mechanics and in quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium	15
CO402D.5:] The Eightfold way, Meson nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU (3) symmetry, Quark spin and color, Quark-antiquark combinations. Weak Interactions: Classification of weak interactions, Fermi theory, Weinberg-Salam model, Parity non-conservation in β-decay, Helicity	3	section and decay rates, Pion spin, Isospin, Two-nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and	15
	4	 CO402D.5:] The Eightfold way, Meson nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU (3) symmetry, Quark spin and color, Quark-antiquark combinations. Weak Interactions: Classification of weak interactions, Fermi theory, Weinberg-Salam model, Parity non-conservation in β-decay, Helicity 	15

TEXT BOOKS

- 1. Perkins, D.H., Introduction to High Energy Physics, Cambridge University Press, 2000, 3rded.
- 2. Hughes, I.S., Elementary Particles, Cambridge University Press, 1991.

- 3. Close, F.E., Introduction to Quarks and Partons, Academic Press, 1979.
- 4. Segre, E., Nuclei and Particles, Benjamin-Cummings, 1977.
- 5. Khanna, M.P., Introduction to Particle Physics, Prentice-Hall of India, 2004.

Experimental Techniques in Nuclear and Particle Physics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Experimental						Week: 4
2021-22	Techniques in Nuclear and Particle Physics	3	1	0	4	IV (2 nd Year)	Total Hours: 60
Subject Code:	Applicable to	Evalua		30	Examir	ation Duration	:3 hours
SBS PHY 01	Programs: M.Sc.	tion	CIE	Marks			
403 DCEC	Physics	<i>(</i>					
3104		(Total		70	Prerequisite of Course: Basics of		
		Marks:	TEE	Marks	Nuclear and Particle Physics		hysics
		100)					
Course	This course is in	his course is intended to familiarize the M.Sc. students to the experimental				xperimental	
Description	techniques used in the fields of nuclear physics and particle physics. Various detection						
	techniques will b	e introdu	iced followe	d by a de	scription	n of on-detect	or and off-
	detector electronic	CS.					
Course Objectives	 Get knowledge about various experimental techniques used in the fields of nuclear physics and particle physics. To get familiar with various detector systems and related electronics. 						

CO403D.1. Get knowledge about different types of radiations & their interaction with matter. CO403D.2. Understand the radiation exposure and its effects on biological system. CO403D.3. Learn about how to detect radiations. CO403D.4. Get knowledge about the various electronic components of radiation detectors and pulse signal processing. CO403D.5. Understand Learn about different existing detector facilities all around the world.

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Radiation interactions: [Course Outcome(s): CO403D.1 & CO403D.2] Nuclear processes in radioactive sources: types of radiations & radiation sources; Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter. Radiation protection, Biological effects of radiation, radiation monitoring.	15
2	Detection of radiations: [Course Outcome(s): CO403D.3] General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Gas-filled detectors: Ionization chamber, Proportional counters, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time projection chamber. Scintillation detector, Phoswich detectors, Cherenkov detector. Semiconductor detectors. Detection of fast and slow neutrons - nuclear reactions for neutron detection. General Background and detector shielding.	15
3	Detector electronics: [Course Outcome(s): CO403D.4] Electronics for pulse signal processing, CR-(RC) ⁿ and delay-line pulse shaping, pole-zero cancellation, baseline shift and restoration, preamplifiers, overload recovery and pileup, Linear	15

	amplifiers, single-channel analyser, analog-to-digital converters, multichannel analyzer. Basic considerations in time measurements; Walk and jitter, Time pickoff methods, time-to-amplitude converters, Systems for fast timing, fast-slow coincidence, and particle identification, NIM and CAMAC instrumentation standards and data acquisition system.	
4	Experimental Facilities: [Course Outcome(s): CO403D.5] Detector systems for heavy-ion reactions: Large neutron detector array, gamma and charge particle detector arrays, electron spectrometer, heavy-ion reaction analysers, nuclear lifetime measurements (DSAM and RDM techniques), production of radioactive ion beams. Detector systems for high energy experiments: basics of Collider physics, Modern Hybrid experiments- CMS and ALICE.	15

TEXT BOOKS

- 1. **W.R. Leo,** Techniques for Nuclear and Particle Physics Experiments, Springer, Berlin Heidelberg, 2nd Edition, 1994.
- 2. **Konrad Kleinknecht**, Detectors for particle radiation, Cambridge University Press, 1999.
- 3. **Richard Fernow**, Introduction to Experimental Particle Physics, Cambridge University Press, 2001.
- 4. Glenn F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 4th Edition, 2010.

Cosmology

Scheme Version:	Name of the subject: Cosmology	L	T	P	С	Semester	Contact Hours per
2021-22						IV(^{2nd}	Week: 4
		3	1	0	4	Year)	Total Hours: 60
Subject	Applicable to	Evalu		30	Exam	ination Du	ration: 3
Code: SBS	Programs:	ation	CIE	Marks	hours		
PHY 01 404	M.Sc. Physics	(Total		70		_	troduction
DCEC 3104		Mark	TEE	Marks		ronomy an	d
		s: 100)			Astro	physics	
Course	Cosmology is a	branch o	f astronomy	that invo	lves th	e origin and	d evolution of
Description	the universe, from	n the Big	Bang to too	lay and on	into the	e future.	
Course	The aim of this c	ourse is t	o introduce	the model	of the u	niverse on	large scales
Objectives							
	On completion of	f the cou	rse, student v	would be a	ble to		
Course	CO404D.1 : Und						
Outcomes	CO404D.2 : App	oly the co	ncepts of G	ΓR to cosm	nology		
	CO404D.3 : Uno				_		
	CO404D.4 : Exp			•	e and its	thermal hi	story.
	T		RSE SYLL				
Unit No.		Conte	nt of Each	U nit		H	ours of Each Unit
	Principles of Re						
1	Overview of Sp		•				15
	Lorentz metric-				_		
	relativity (GR) -						
	Gravitation as				urvatu	re of	
	spacetime : [Co				ر سن مدنا		
2	gravitational reds gravity, light ber					-	15
	horizon and erg	_	_	_		-	
	gravitational radi	-	nydrostatic	equinorn	<i>4</i> 111 111		
	Cosmological M		Course Ont	comes : C	O404D	.3]	
	Universe at larg						1.5
3	distance ladder		_	•			15
			l Principle		-		

	Robertson-Walker metric - Observable quantities -						
	luminosity and angular diameter distances - Horizon						
	distance- Dynamics of Friedman- Robertson-Walker models:						
	Friedmann equations for						
	sources with p=wu and w = -1 , 0, 1/3, discussion of closed,						
	open and flat Universes.						
	Physical Cosmology and Early Universe: [Course						
	Outcomes : CO404D.4]						
	Thermal History of the Universe - distribution functions in						
	the early Universe – relativistic and nonrelativistic limits -						
	Decoupling of neutrinos and the relic neutrino background -						
4	Nucleosynthesis - Decoupling of matter and radiation -	15					
	Cosmic microwave background radiation (CMB)-						
	Anisotropies in CMB - Inflation - Origin and growth of						
	Density Perturbations - Formation of galaxies and large scale						
	structures - Accelerating universe and type-Ia supernovae -						
	The Intergalactic medium and reionization.						
	Tayt Rooks						

Text Books

- 1. Cosmological Physics, Cambridge University Press, J. A. Peacock
- 2. An Introduction to Relativity, J. V. Narlikar, Cambridge University Press, 2010
- 3. Theoretical Astrophysics, Volume III: Galaxies and Cosmology,
- T. Padmanabhan, Cambridge University Press, 2002 (for lectures on Cosmology)
- 4. Classical Theory of Fields, Vol. 2, L. D. Landau and E. M. Lifshitz, Oxford: Pergamon Press, 1994 (For more material on General Relativity).
- 5. Introduction to Cosmology, J. V. Narlikar, Cambridge University Press, 1993 (For the lectures on Cosmology).
- 6. First course in general relativity, B. F. Schutz, Cambridge university press, 1985 (For material on General Relativity).
- 7. Structure Formation in the Universe. T. Padmanabhan, Cambridge University Press, 1995 (for material on Cosmology and Structure formation).

Astronomy Laboratory

Scheme Version: 2021-22	Name of the subject: Astronomy Laboratory	L	Т	P	C	Semester: IV(^{2nd}	Contact Hours per Week: 4
	·	0	0	8	4	Year)	Total Hours: 60
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	30 Marks	Exam hours	ination Dura	ation: 3
PHY 01 405 DCEC 0084	M.Sc. Physics	(Total Mark s: 100)	TEE	70 Marks	to Ast	equisite: Intr ronomy and physics	roduction
Course Description	This course shall astronomy first-h	_	ding the too	ls and kno	ow-how	to apply the p	principles of
Course Objectives	The aim of this course to make students aware about different softwares (e.g. stellarium etc.) available to simulate night sky and observe astronomical phenomenon.						. •
Course Outcomes	On completion of the course, student would be able to CO307D.1: become familiar with astronomical coordinate system CO307D.2: Study the spectrum of celestial objects CO307D.3: observe the distance of planets						
	CO307D.4: obse		oroper motion				
Unit No.			nt of Each			Hou	rs of Each Unit
1	Getting to know: [Course Outcomes: CO307D.1] Experiment 1: To become familiar with night sky Experiment 2: Becoming Familiar with Constellations Experiment 3: Retrograde motion of Planets						15
2	Spectral Analysis Experiment 4: St	_			7D.2]		15

	Experiment 5: Spectral classification of stars	
	Experiment 6: Extracting position of a star	
	Stellar Motions : [Course Outcomes : CO307D.4] Experiment 7: Cepheid Variables	
3	Experiment 8: To measure the Proper Motion of Barnard's Star	15
	Experiment 9: Circumpolar Star	
	Stellar Distances : [Course Outcomes : CO307D.3]	
	Experiment 10: Colour Magnitude Diagram	
4	Experiment 11:Orbital Inclination	15
	Experiment 12: Planetary Distances	
	Experiment 13: Distance to the Moon	
	Defende	L

References

- 1. http://www3.gettysburg.edu/~marschal/clea/Vireo.html
- 2. https://astro.unl.edu/vlabs/
- 3. http://va-iitk.vlabs.ac.in/
- 4. https://www.astro.indiana.edu/catyp/minilabs.html
- 5. https://depts.washington.edu/naivpl/content/welcome-virtual-planetary-laboratory

FERROELECTRICITY AND MAGNETISM

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Ferroelectricit						Week: 4
	y and					-	
2021-22	Magnetism						Total
2021 22		3	1	0	4	IV (2 nd Year)	Hours: 60
			_				
Subject Code:	Applicable to	Evaluation		30	Examin	ation Duration:	3 hours
SBS PHY 01 406	Programs:		CIE	Marks			
DCEC 3104	NA Co. Div. dia.	(Total					
	M.Sc. Physics	Marks:		70	•	isite of Course	
		100)	TEE	Marks		tion Level Solid	-State
					Physics		
Course	This course is designed to convey the understanding about dielectric, ferroelectric,						
Description	and magnetic	materials, w	hich pos	ssess sev	eral brea	akthrough app	lications in
	actuators, senso	rs, energy sto	rage devi	ces, data s	storage d	evices etc.	
	• To	understand the	fundame	entals of c	lielectric,	ferroelectric and	d magnetism
	phenomenon in solids						
	• To r	nake acquainte	d with sev	veral types	of electri	c and magnetic	materials and
Course Objectives		exciting proper					
Objectives	. Т.				1: 4:	f.f	
	• 10 a		its about i	ndustriai aj	ppiications	s of ferroelectric	and magnetic
	macrais						
	To develop the positive and scientific attitudes and analytical thinking in the						
	students related to materials science						
Course	After competition	ns of this cou	rse, the s	tudents w	ill be able	e to	
Outcomes	CO40CD 1	المناسم مالم سنما	ا - السعم		- i.a	والمحاطفانين واوجون	ain avaitir-
	CO406D.1. exp	iain the diel	ectric pi	ienomeno	on in cr	ystais with th	eir exciting

properties

CO406D.2. interpret the theory of polarization and components of polarizability of polar

dielectrics

CO406D.3. learn the basics of ferroelectric and piezoelectric crystals

CO406D.4. understand the applications of ferroelectric and piezoelectric materials in various electronic devices

CO406D.5. describe the diamagnetism and paramagnetism phenomenon in solids, specifically the magnetic susceptibility behavior with temperature

CO406D.6. evaluate the paramagnetic susceptibility of iron group ions, rare earth ions, and conduction electrons

CO406D.7. compare the general mechanism of ferro, ferri, and anti-ferro magnetic materials

CO406D.8. recognize some new ferromagnetic materials which possess intriguing applications in data storage devices

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Theory of Dielectrics [Course Outcome(s): CO406D.1 & CO406D.2] Introduction, The Microscopic Concept of Polarization, Langevin's Theory of Polarization in Polar Dielectrics, Internal-Field or Local Field, Clausius-Mossotti Relation, Components of Polarizability: Electronic Polarizability; Ionic Polarizability; Orientational Polarizability; Total Polarizability, Measurement of Dielectric Constant, Dielectric Losses, Optical Phenomena.	15
2	Ferroelectric Crystals [Course Outcome(s): CO406D.3 & CO406D.4] Representative Crystal Types of Ferroelectrics: Properties of Rochelle Salt and Barium Titanate, Ferroelectric Displacive Transitions, Landau Theory of Phase Transition: Second-Order Transitions; First-Order Transitions, Antiferroelectricity, Ferroelectric Domains,	15

	Piezoelectricity, Electrostriction, Applications of Ferroelectric Crystals.	
3	Diamagnetism and Paramagnetism [Course Outcome(s): CO406D.5 & CO406D.6] Langevin's Theory of Diamagnetism, Quantum Theory of Diamagnetism: Mononuclear Systems, Langevin's Theory of Paramagnetism, Quantum Theory of Paramagnetism: Rare Earth Ions; Hund Rule; Iron Group Ions; Crystal Field Splitting, Van Vleck Paramagnetism, Nuclear Paramagnetism, Cooling by Adiabatic Demagnetization, Paramagnetic Susceptibility of Conduction Electrons.	15
4	Ferromagnetism and Antiferromagnetism [Course Outcome(s): CO406D.7 & CO406D.8] Ferromagnetic Order: Weiss Theory of Ferromagnetism; The Exchange Interaction; The Heisenberg Model, Ferrimagnetic Order: Curie Temperature and Susceptibility of Ferrimagnets, Antiferromagnetic Order, Ferroelectric Domains: Anisotropy Energy; The Bloch Wall; Origin of Domains; Coercivity and Hysteresis, Spin Waves: Magnons in Ferromagnets; The Bloch T ^{3/2} Law, Determination of Magnetically Ordered Structures, Some New Magnetic Materials: GMR-CMR Effects.	15

TEXT BOOKS

- 1. **S. Blundell**, Magnetism in Condensed Matter, Oxford, UK, 1st Edition, 2001.
- 2. **M.E. Lines and A. M. Glass**, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, UK, 2001.
- 3. **M. A. Omar**, Elementary Solid State Physics, Pearson, India, 1st Edition, 2002.
- 4. **B. D. Culity and C. D. Grahim**, Introduction to Magnetic Materials, Wiley, USA, 2nd Edition, 2008.
- 5. **K. Uchino**, Ferroelectric Devices, CRC Press publication, Taylor and Francis Group, 2nd Edition, 2010.
- 6. **C. Kittel**, Introduction to Solid State Physics, John Wiley and Sons, USA, 8th Edition, 2012.
- 7. **M. P. Marder**, Condensed Matter Physics, Wiley, USA, 2nd Edition, 2015.

VACUUM SCIENCE AND THIN FILM TECHNOLOGY

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	Subject:						hours per
	Vacuum Science and						week: 4
	Thin Film	3	1	0	4		Total
2021-2022	Technology		_		•	IV (2 nd Year)	Hours: 60
						(2 ^m Year)	
Subject Code:	Applicable to		CIE	30	Exam	nination Durati	ion: 3
SBS PHY 01 407	Programs:	Evaluation (Total	CIL	Marks	hour	S	
DCEC 3104	M.Sc. Physics	Marks): 100	TEE	70 Marks	Pre-r	equisite of cou	ırse:
Course	The central objective	of the course	is to pr	rovide bas	ic und	erstanding of	physics and
Description	technology behind thi	in film growth.	Possible	applicatio	ns den	nonstrating no	vel material
	designs and case studies in technological areas of current interest will be discussed.						
Course		acuum fundame		sential to	operat	ing, maintainin	g,
Objectives	.	using vacuum sy	•				Ale e u
		king principles m components.		tations or p	oumps	, gauges, and o	tner
	· ·	ign concepts in		n matching	equip	ment and instru	umentation
	to application	S.					
Course	On completion of this	course, studen	t will lea	ırn:			
Outcomes:	CO407.1 Understand the Kinetic Theory of Gases, mean free path and the physical concepts behind the thin film depositions.						
	CO407.2 Understand the kinetic theory of nucleation, growth and diffusion phenomenon						
	CO407.3 Understand the basics of vacuum science and technology, Vacuum pumps and gauges and use of various vacuum based techniques for development of thin film-based						

	materials, structures, and plasma devices and systems.					
	CO407.4 Familiarize with the physical concepts of lithography behind the solid-state electronics devices design patterns.					
	CO407.5 Understand certain experimental techniques for characterization of thin films for their structural, morphological, surface topology, electrical, mechanical and optical properties.					
	CO407.6 Design protocols for thin film deposition, cha applications.	racterization and various				
	COURSE SYLLABUS					
Unit No.	Content of Each Unit	Hours of Each Unit				
1.	The physics of gases and vacuum systems: [Course Outcome (s): CO407.1 & CO407.2] Gas kinetics, Maxwell-Boltzmann distribution, molecular impingement flux, Knudsen equation, mean free path, transport properties, Evaporation: thermodynamics of evaporation, evaporation rate, alloys, compounds, sources, deposition monitoring techniques, Deposition: adsorption, surface diffusion, nucleation, structure development, interfaces, stress, adhesion.	15				
2.	Vacuum Science and deposition techniques: [Course Outcome (s): CO407.3] Basics of vacuum science, creation of vacuum using different pumps, vacuum gauges, vacuum leak detection, helium leak detector, residual gas analyzer. Thermal evaporation and electron beam evaporation system, idea of DC and R.F. sputtering system, Methods of producing thin films using Physical vapour deposition, Chemicals Vapour Deposition and spray pyrolysis methods, Molecular Beam Epitaxy and Laser Ablation methods for thin film deposition.	15				

3.	Lithography: [Course Outcome (s): CO407.4 & CO407.5] Importance of lithography, Basic steps of lithography, Substrate preparation methods, Positive photoresist, Negative photoresist, photoresist Processing, photoresist coating methods, Resist Exposure (single, bi-layer and multilevel photoresist exposure) and Resist Development, soft backing and hard baking, Etching, Types of lithography, Photolithography, Idea of electron beam lithography, Idea of an X-ray lithography, Interference Lithography, Step Growth, Nano imprint, Self-Assembly, Nano templates.	15
4.	Thin Film Analysis and Applications: [Course Outcome (s): CO407.6] Film analysis: structure-thickness, topography, inhomogeneity, crystallography, bonding, point defects, composition, optical, electrical and mechanical behavior of thin films. Thin film technology applications: optical windows, integrated circuits, micro-electro-optomechanical systems and photovoltaics.	15

REFERENCE BOOKS

- 1. Chopra, K.L., Thin Film Phenomena, Robert E. Krieger publishing, 1969.
- 2. Smith, D.L., Thin-Film Deposition: Principles and Practice, McGraw-Hill, 1995.
- 3. Hummel, R. E. and Guenther, K.H., Handbook of Optical Properties: Thin Films for Optical Coatings, Volume 1, CRC Press, 1995.
- 4. Ohring, M., The Materials Science of Thin Films, 2nd Edition, Academic press, 2002.
- 5. Soriaga, M.P., Stickney, J., Bottomley, L.A., and Kim Y.G, Thin Films: Preparation, Characterization, Applications, Springer Science 2011.

Advanced Carbon Materials

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Advanced Carbon						Week: 4
2021-22	Materials	3	1	0	4	I (1 st Year)	Total Hours: 60
Subject Code:	Applicable to	Evalua		30	Examination Duration: 3 hours		
SBS PHY 01	Programs: M.Sc.	tion	CIE	Marks			
408 DCEC	Physics	(Total	CIE				
3104		Marks:		70	Prerequisite of Course: None		
		100)	TEE	Marks			
Course	This course aims to introduce students to the advanced carbon material that includes						
Description	graphene, fullerer	nes, hiera	rchical carbo	on, and CN	ITs are	referred to as	strength of
	revolution and advancement in the era of material science and technology. In general,						
	20th century corre	esponds to	plastic mea	nwhile 21st	t century	will be named	as "Century
	of Graphene" owing to its exceptional physical properties.						
Course	On completion of the course, student would be able:						
Objective							

	To understand various properties of Graphene, CNTs and Fullerenes					
Course	On completion of the course, student would be able:					
Outcomes	CO408D.1. To understand the basic properties of carbon					
	CO408D.2.To understand the various properties and applications of graphene					
	CO408D.3.To understand the various properties and applications of CNT					
	CO408D.4.To understand the various properties and applications of fullerenes					

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
	INTRODUCTION [Course Outcome(s): CO408D.1.]	
	Carbon atomic structure and hybridization, carbon on the Earth	
1	and in outer space, carbon in technology and economy, carbon	15
	isotopes: classification of carbon allotropes, conversion of one	
	allotropic form into another, phase diagram of carbon, new carbon	
	structures: discovery of C ₆₀ , Graphene and Nanotubes	
	GRAPHENE [Course Outcome(s): CO408D.2.]	
	Structure of graphene; Preparation of graphene – synthesis of	
	graphene by various physical and chemical methods and	
2	Purification; Electronic Properties – Band Structure of Graphene -	15
	Mobility and Density of Carriers - Quantum Hall Effect –	
	Characterization of graphene: Raman Spectroscopy, Infrared	
	Spectroscopy, Absorption and Photoluminescence Spectroscopy,	
	Atomic Force Microscopy, Application of graphene	
	CARBON NANOTUBES [Course Outcome(s): CO408D.3.]	
	The Structure of Carbon Nanotubes- Nomenclature, Structure of	
	Single-Walled Carbon Nanotubes and Structure of Multiwalled	
3	Carbon Nanotubes; Synthesis of CNT by various physical and	15
	chemical methods and Purification, Characterization of Carbon	
	Nanotubes: Raman and Infrared Spectroscopy of Carbon	
	Nanotubes, Absorption and Emission Spectroscopy of Carbon	
	Nanotubes, ESR-Spectroscopic Properties of Carbon Nanotubes.	

	Application of CNTs	
	FULLERENES [Course Outcome(s): CO408D.4.]	
4	Structure and Bonding- Nomenclature, The Structure of C60, Structure of Higher Fullerenes - Growth Mechanisms; Production and Purification- Fullerene Preparation by Pyrolysis of Hydrocarbons, Partial Combustion of Hydrocarbons, Arc Discharge Methods, Production by Resistive Heating, Rational Syntheses; Physical Properties-, Spectroscopic Properties, Thermodynamic Properties; Chemical Properties- Hydrogenation and Halogenation, Nucleophilic Addition to Fullerenes. Application of Fullerenes	15

TEXT BOOKS

- **1. M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund,** Science of Fullerenes and Carbon Nanotubes, Elsevier, 1996.
- 2. Yury Gogotsi, Carbon Nanomaterials, Taylor and Francis, 2006.
- **3.** Francois Leonard, The Physics of Carbon Nanotube Devices, Elsevier, 2008.
- 4. Anke Krueger, Carbon Materials and Nanotechnology, Wiley-VCH, 2010.
- 5. **D.R. Askeland**, **P.P. Phule**, **W.J. Wright**, The Science and Engineering of Materials, 6th ed., Cengage Learning, 2010.
- 6. **Jamie H. Warner, Franziska Schäffel, Mark H. Rümmeli,** Graphene: Fundamentals and emergent applications, Elsevier, 2013.
- 7. **T. Pradeep**, NANO: The Essentials- Understanding Nanoscience and Nanotechnology, McGraw Hill Education, 2017.
- 8. **Deborah D L Chung**, Carbon Materials: Science and Applications, World Scientific, 2019.

Minor Research Project

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						Hours per
	Minor Project						Week: 4
2024 22							Total
2021-22		0	0		4	IV (2 nd Year)	Hours: 60
Subject Code	Applicable to	Evalua		00	- From:	notion Duration	2 hours
Subject Code:	Applicable to			00	Examination Duration: 3 hours		
SBS PHY 01 409 DCEC	Programs:	tion	CIE				
00016	M.Sc. Physics	(Total		100	Prerequisite of Course: None		e: None
00010		Marks: 100)	TEE	Marks			
Course	The minor j	project topic wi	ll be decid	ed on the	basis of	student skill ar	nd interest.
Description	On mentor	will be allocated	d to studer	nt for discu	ıssion ar	nd direction.	

Course Objectives	Student will have idea about the literature survey and how to write an overview.
Course Outcomes	After completion of this project, students will be able to learn about: CO401.1. Basic of literature review CO401.2. Learn how to do research
	CO401.3. How to write a report. CO401.4. Present the work done in minor project.

Evaluation: The evaluation will be done by a Departmental committee constituted by Head of the Department. Committee will award the grades based on quality of project work done and presentation made by student.

INTRODUCTION TO HYDROGEN ENERGY SYSTEMS

Scheme Version:	Name of the Subject: Introduction to	L	Т	P	С	Semester:	Contact hours per
2021-2022	Hydrogen Energy						week: 4
	Systems	3	1	0	4	IV (2 nd Year)	Total
							Hours: 60
Subject Code: SBS PHY 01 410 DCEC 3104	Applicable to Programs:	Evaluation (Total	CIE	30 Marks	Examination Duration: 3 hours Pre-requisite of course: None		
DCEC 3104	M.Sc. Physics	Marks): 100	TEE	70 Marks			
Course	To introduce the concept of energy generation from Hydrogen as future fuel. To enlighten the						
Description	knowledge of production, storage and transportation.						
Course Objectives	This course aim is to g future source of energy.	give insight of h	ydrogen	production,	storage	e and their appl	ication, as a

Course	On completion of this course, student will learn:	=							
Outcomes:	The state of the s								
	CO410.1 The Course will create awareness among students about Non-Conventional sources of								
	energy technologies and provide adequate inputs on a variety of issues.								
	CO410.2 There is very good scope for saving energy, by using it judiciously. During these days								
	of saving the environment, energy conservation plays a vital role. The government of India has								
	passed Energy Conservation Act-2003 and Energy Conservation Building Code (ECBC-2007), in								
	this regard. By observing energy efficient measures there is tremendous scope of saving energy in								
	industry, built environment, transport etc.								
	CO410.3 To teach fundamentals of hydrogen energy as energy sy	stems, production processes,							
	separation and utilization that is necessary for taking some importan	nt elective subjects as well as							
	to increase the potential for job opportunities in automotive industrie	es and hydrogen production &							
	its infrastructure development related sectors as about 40% end	ergy is being consumed by							
	automotive sectors.								
	CO410.4 This course has objectives to elaborate PG students regardi	ing current trends in hydrogen							
	energy architecture and following key concepts such as hydrogen sto	rage and hydrogen sensing.							
	CO410.5. To Provide adequate inputs on a variety of issues relatir	ng to safety guidelines, codes							
	and standards in hydrogen energy systems.								
	COURSE SYLLABUS								
Unit No.	Content of Each Unit	Hours of Each Unit							
5.	Hydrogen energy pathways: [Course Outcome (s): CO410.1 &	15							
	CO410.2]								
	Hydrogen Energy Pathways- Properties of hydrogen, Global and								
	Indian hydrogen energy scenario, need for hydrogen, current uses,								
	environmentally sustainable hydrogen, hydrogen as part of Climate								
	Neutral Strategy. Hydrogen for mobility applications & vehicles,								
	Overview of Hydrogen utilization: I.C. Engines, gas turbines,								
	hydrogen burners, power plant, refineries, domestic and marine								
	applications.	15							
6.	Hydrogen production and separation: [Course Outcome (s): CO410.3]	15							
	Hydrogen Production-Production of hydrogen from								
	hydrocarbons-oxidative and nonoxidative processes, coal.								
	Hydrogen production using nuclear energy and renewables- wind,								
	biomass, solar.								
	Hydrogen separation and purification-Pressure swing								
	adsorption, Solvent based absorption, membrane separation,								
	cryogenic separation etc.								
7.	Hydrogen storage: [Course Outcome (s): CO410.4]	15							
	Hydrogen Storage -Types of hydrogen storage (Gaseous, Liquid,								
	Solid hosts), Gibbs Phase Rule, Pressure-Composition-								
	Temperature plots; Van't Hoff plots for absorption desorption								
	enthalpies, Gravimetric capacities, Hysteresis in cycling, Joule-								
	Thomson Effect, Non-ideal treatment of hydrogen gas Kinetics:								
	Hydrogen absorption/desorption phenomena (chemisorption,								
	nucleation and growth and diffusion), Kinetic models, Kissinger								
	analysis for activation energy estimation, Hydrogen adsorption								
	anarysis for activation energy estimation, frydrogen adsorption								

	isotherms-BET, design and applications of storage systems, materials for hydrogen storage, Hydrogen storage for automobiles.	
8.	Hydrogen sensing and safety: [Course Outcome (s): CO410.4& CO410.5] Hydrogen sensing-Traditional methods of hydrogen sensing using thermal conductivity measurements or Gas Chromatography, Mass Spectroscopy or laser gas analysis; Solid state sensors- their working principle and applications at industrial scale. Hydrogen Safety-Physiological, physical and chemical hazards, hydrogen properties associated with hazards, Hazard spotting, evaluation and safety guidelines, Hydrogen safety codes and	15
	standards. Hydrogen safety barrier diagram, risk analysis, safety in handling and refueling station, safety in vehicular and stationary applications, fire detecting system, safety management.	
	DEFEDENCE DOOKS	

REFERENCE BOOKS

- 15. F. Peter, Fuels and Fuel Technology, A. Wheatan & Co. Ltd., 1st edition, 1965.
- 16. JOM Bockris, Energy options: Real Economics and the Solar Hydrogen System, Halsted Press and London publisher, 1980.
- 17. S. Sarkar, Fuels and Combustion, Orient Longman, 2nd edition, 1990.
- 18. J Twidell and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), New York, USA, 2006.
- 19. J. G. Speight, The chemisty & Technology of Petroleum, 4th edition, CRC Press, 2006.
- 20. M. Ball and M. Wietschel, The Hydrogen Economy Opportunities and Challenges, Cambridge University Press, 2009.
- 21. J.G. Speight and B. Ozum, Petroleum Refining Process, CRC Press, 2009.
- 22. W. Lyons, Working Guide to Petroleum and Natural Gas Production Engineering, Elsevier Inc, 2009.
- 23. Ke Liu, C. Song and V. Subramani, Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, 2010.
- 24. M.K.G. Babu, K.A. Subramanian, Alternative Transportation Fuels: Utilization in Combustion Engines, CRC Press, 2013.
- 25. J. G. Speight, The Chemistry and Technology of Coal, CRC Press, 2013.

9. TEACHING-LEARNING PROCESS

- Lectures
- Discussions
- Simulations
- Role Playing
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-embedded Learning

10. IMPLEMENTATION OF BLENDED LEARNING

Blended Learning is a pedagogical approach that combines face to-face classroom methods with computer-mediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasises student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimises and compliments the face to face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- Student-Centric Pedagogical Approach focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to Select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction:
- Improved student learning outcomes;

- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;
- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: Resolution no (c) as per minutes circulated by VC office: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each programme, be adopted

11. ASSESSMENT AND EVALUATION

- Continuous Comprehensive Evaluation at regular after achievement of each Courselevel learning outcome
- Formative Assessment on the basis of activities of a learner throughout the programme instead of one-time assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations
- · Review of Literature
- Collaborative Assignments

12. KEYWORDS

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Programme Outcomes
- Programme Specific Outcomes
- Course-level Learning Outcomes
- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation

13. REFERENCES

- National Education Policy-2020. https://www.education.gov.in/sites/upload files/mhrd/files/NEP Final English 0. pdf
- The draft subject specific LOCF templates available on UGC website. https://www.ugc.ac.in/ugc_notices.aspx?id=MjY50Q==
- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website. https://www.ugc.ac.in/pdfnews/6100340 Concept-Note-Blended-Mode-of-Teaching-and-Learning.pdf

14. APPENDICES